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Abstract 
 
This paper characterizes geometrically the set of all Nash equilibrium payoffs achievable with 
unmediated communication in persuasion games, i.e., games with an informed expert and an 
uninformed decisionmaker in which the expert's information is certifiable. The first 
equilibrium characterization is provided for unilateral persuasion games, and the second for 
multistage, bilateral persuasion games. As in Aumann and Hart (2003), we use the concepts 
of diconvexification and dimartingale. A leading example illustrates both geometric 
characterizations and shows how the expert, whatever his type, can increase his equilibrium 
payoff compared to all equilibria of the unilateral persuasion game by delaying information 
certification. 
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1 Introduction

As is now well known in the literature on cheap talk games (i.e., games with costless,

non-binding, and unmediated communication), repeated communication generally allows

to reach outcomes that cannot be implemented with unilateral or single-period communi-

cation, even if only one player is privately informed (see Aumann and Hart, 2003, Forges,

1984, 1990a, Krishna and Morgan, 2004, and Simon, 2002). In this paper we study this fea-

ture in “sender-receiver” communication games with partially verifiable types, also called

persuasion games, in which the informed player (the expert, or “sender”) has the abil-

ity to voluntarily certify partial or full information to the uninformed decisionmaker (the

“receiver”). We characterize the set of all Nash equilibrium payoffs achievable with un-

mediated communication, by allowing players to talk for many periods. At each stage of

this communication phase, the sender can certify part of his information.

This possibility of certifying information, in addition to make cheap talk claims, is jus-

tified by many concrete interactive decision situations. For example, players may present

physical proofs such as documents, observable characteristics of a product, endowments

or costs. Alternatively, in economic or legal interactions there may be labels, penalties

for perjury, false advertising and warranty violations, or accounting principles that allow

agents to submit substantive evidence of their information. Interesting phenomena similar

to those obtained in the cheap talk case arise in games with strategic information certi-

fication. We show that several bilateral communication stages and delayed information

certification allow to convey substantive information and lead to equilibrium outcomes

that are not achievable when only one signalling stage is permitted. A leading example is

analyzed in Section 2.

Our study is closely related to Aumann and Hart (2003) who characterized Nash

equilibrium payoffs of long cheap talk games, i.e., the subset of communication equilibrium

payoffs (Forges, 1986, 1990b; Myerson, 1982, 1986) that use only plain conversation. A

communication equilibrium is a Nash equilibrium of an extension of the game allowing the

players to communicate for several periods, with the help of a mediator, before they make

their decisions. Here, we characterize the analog of that subset for certification equilibria

(Forges and Koessler, 2005). A certification equilibrium is defined as a communication

equilibrium, except that each player can also transmit reports from a type-dependent set,

i.e., can send certified information into the communication system.

Our general model, presented in Section 3, is a one-side incomplete information game

with an expert (the informed player) and a decision maker (the uninformed player). A

common prior probability distribution first selects the expert’s type in a finite set. The
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decision maker chooses his action without observing the expert’s type. However, before

the action phase, but after the expert learns his type, the players are able to directly

communicate with each other. The payoff of each player only depends on the expert’s type

and on the decision maker’s action. Communication is assumed strategic, non-binding (no

commitment and no contract are allowed), payoff-irrelevant, and unmediated. In addition,

players are not able to observe private payoff-irrelevant signals (“private sunspots”) and

there is no extraneous noise in communication, which thus takes place “face-to-face”.

However, randomized strategies are allowed in both the communication and action phases.

Contrary to usual cheap talk games (Crawford and Sobel, 1982; Ben-Porath, 2003;

Gerardi, 2004; Krishna and Morgan, 2004), our communication games allow the set of

messages available to the expert to be type-dependent, which reflects the ability to certify

his information. We will assume that the expert has always the opportunity to remain

silent, i.e., to send a meaningless message to the decision maker. Furthermore, to guarantee

that our geometric characterization be sufficient for an equilibrium, we will require that

players have access to a rich language and that information is fully certifiable. More

precisely, we make the following assumption: for any set of types containing his real type,

the expert has a sufficiently large set of messages allowing him to certify that his real type

belongs to that set.

In the associated one-shot communication game the expert learns his type and sends

a message to the decision maker, who then chooses an action. Such games are sometimes

called persuasion or disclosure games (see, e.g., Milgrom, 1981; Milgrom and Roberts,

1986; Seidmann and Winter, 1997). To the best of our knowledge, this literature has

always focused on one-shot information revelation with very specific assumptions on play-

ers’ preferences, like single-peakedness, strict concavity and monotonicity. Our first result

(Theorem 1) is a full characterization of Nash equilibrium payoffs of one-shot communica-

tion games with certifiable information. Roughly, equilibrium payoff vectors are obtained

by convexifying the graph of the equilibrium payoff correspondence of the basic game

without communication (the silent game), by keeping the payoff of the informed player

constant and individually rational. Several geometric illustrations involving full, partial

and/or no information revelation are provided.

In a multistage communication game, the talking phase has an arbitrarily large num-

ber of periods. In each communication period both players simultaneously send a message

that depends on the history of play up to that period. The informed player’s message

may also depend on his private information. As in Hart (1985) and Aumann and Hart

(2003), our equilibrium characterization makes use of the mathematical concepts of dicon-

vexification and dimartingale. In Theorem 2 we show that the set of equilibrium payoffs
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of any multistage communication game can be characterized in terms of starting points

of dimartingales converging to the graph of the equilibrium payoff correspondence of the

silent game, and staying in an adapted set of individually rational payoffs for the informed

player during the whole process. Individual rationality must indeed be formulated in a

stage-dependent way in our model. This is the main difference with Aumann and Hart’s

(2003) characterization. Our representation can also be formulated by using the dicon-

vexification operator. However, by contrast to Aumann and Hart (2003), the graph of

the equilibrium payoff correspondence of the multistage communication game is not the

diconvexification of a given set.

The paper is organized as follows. In the next section we present our leading example.

Section 3 describes the model. Section 4 formulates the geometric characterizations of the

equilibrium payoffs, illustrates them through examples, and provides a more detailed com-

parison with Aumann and Hart (2003). Formal proofs of Theorem 1 (one-shot, unilateral

persuasion) and Theorem 2 (multistage, bilateral persuasion) are provided in Sections 5

and 6, respectively. We discuss extensions of the model in Section 7: mediated persuasion,

unbounded number of talking stages, equilibrium refinement, and partial certifiability. The

Appendix contains several additional examples.

2 An Example

In this section we study an example which motivates two aspects of our analysis. First,

the example illustrates how by certifying their information players can reach equilibrium

outcomes that cannot be achieved by any communication system with non-certifiable in-

formation. Second, the example shows that delayed information certification and multiple

rounds of bilateral communication may be required to achieve some equilibrium payoffs,

even if only one player has substantive information.

Consider two players, player 1 (the expert) and player 2 (the decisionmaker), who are

playing a strategic form game which depends on the true state of Nature, k1 or k2, each

of probability 1/2 (see Figure 1 on the following page). Player 1 knows the true state of

Nature but player 2 does not know the actual game being played. Player 2 must choose

action j1, j2, j3, j4 or j5, and player 1 has no choice. The expected payoff of player 2, as a

function of his action and his belief p ∈ [0, 1] about state k1, is represented by Figure 2 on

the next page (the thick lines denote his best-reply payoff).

Without communication possibilities (in the “silent game”), the only equilibrium payoff

is (0, 7) since action j3 yields the best expected payoff for player 2 given his prior belief

p = 1/2. If, before player 2’s decision, the players are able to talk to each other, but
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j1 j2 j3 j4 j5

k1 5, 0 3, 4 0, 7 4, 9 2, 10

k2 1, 10 3, 9 0, 7 5, 4 6, 0

Figure 1: Introductory example.
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Figure 2: Player 2’s expected payoffs (thin lines) and best-reply expected payoffs (thick
lines) in the introductory example.

no information can be certified concerning the true state of Nature then, whatever the

communication possibilities, the unique equilibrium payoff remains (0, 7). Information

transmission is not possible here because if player 2 chooses his action conditionally on

the messages sent by player 1 then, whatever the true state of Nature, player 1 has always

an incentive to use the messages he should have sent at the other state. In other words,

information which is transmitted to player 2 is never credible, even if in every state it is to

the advantage of both players that player 1 tells the truth to player 2, and that the latter

believes him. Notice that allowing unboundedly long communication, or even adding a

mediator, cannot help here: one can check that the unique communication equilibrium

outcome is the equilibrium j3 of the silent game.

Assume now that player 1 can voluntarily certify his information concerning the real

state of Nature. That is, his informational reports are assumed truthful (the making
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of false statements is prohibited), but he may withhold his information since he is not

required to make positive disclosures. Assume first that player 1 can only send a single

message and that player 2 cannot send any message. More precisely, assume that player 1

can choose between two types of reports: either he certifies his information (he sends

message m = c1 if the real state is k1 and message m = c2 if the real state is k2), or he

certifies no information (he sends message m = m which is available whatever the true

state). It is easy to see that full revelation of information is now an equilibrium, denoted

by FRE: player 2 chooses action j5 if player 1 reveals that the true state is k1, he chooses

j1 if player 1 reveals that the true state is k2, and chooses j3 if player 1 reveals nothing. In

such a situation, player 1 has no incentive not to reveal his information because his payoff

would be zero instead of 2 in state k1 and 1 in state k2. Obviously, player 2 also behaves

rationally because he chooses the best action for him in each state of Nature.

As in usual cheap talk games, the non-revealing outcome is also an equilibrium, denoted

by NRE, since player 2 can always ignore what player 1 says and choose action j3.
1

The two equilibrium outcomes described above are not the only equilibrium outcomes

of the one-shot communication game with certifiable information. Indeed, if we allow

player 1 to randomize, then there are two other partially revealing equilibria. One of them

is better for player 1 than any of the previous pure strategy equilibria since it gives him a

payoff of 2 whatever his type. In this equilibrium, denoted by PRE1, player 1 certifies his

type (i.e., sends message c1) with probability 1/3 and remains silent (i.e., sends message

m) with probability 2/3 in k1, and he always remain silent in state k2. Player 2’s posterior

beliefs are Pr(k1 | m) = Pr(m|k1) Pr(k1)
Pr(m) = 2/6

2/6+1/2 = 2/5 and Pr(k1 | c1) = 1, so he plays

action j5 when he receives message c1 and is indifferent between j2 and j3 when he receives

message m. If he plays j2 with probability 2/3 and j3 with probability 1/3 after m, and if

he plays j1 after the off-equilibrium message c2 then player 1 has no incentive to deviate:

in k1 he gets a payoff of 2 if he sends message c1 and also (2/3) × 3 + (1/3) × 0 = 2 if he

sends message m, so he is indifferent between the two messages; in k2 he gets a payoff of 1

if he sends message c2 and (2/3) × 3 + (1/3) × 0 = 2 if he sends message m, so he strictly

prefers to send message m.

In the second partially revealing equilibrium with randomized certification, denoted by

PRE2, player 1 always remains silent in state k1; he certifies his type with probability 1/3

and remains silent with probability 2/3 in k2. Player 2’s posterior beliefs are Pr(k1 | m) =

3/5 and Pr(k1 | c2) = 0, so he plays action j1 when he receives message c2 and is indifferent

1However, notice that contrary to the fully revealing equilibrium, the non-revealing equilibrium is based
on irrational choices off the equilibrium path since player 2 should not choose action j3 when player 1
reveals him the true state of Nature (NRE is not subgame perfect). Restrictions to credible moves off the
equilibrium path are investigated in Subsection 7.3.
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between j3 and j4 when he receives message m. If he plays j3 with probability 4/5 and j4

with probability 1/5 after message m, and if he plays j3 after the off-equilibrium message

c1 then it can be checked as before that player 1 has no incentive to deviate.2

Now, we show that if players are able to talk to each other during several bilateral

communication rounds and to delay information certification, then player 1 can reach even

a higher equilibrium payoff of 3 whatever his type. This equilibrium can be achieved in

three communication stages. In the first two communication stages there is no information

certification, and in the last communication stage player 1 will certify his information to

player 2 conditionally on what both players said in the previous communication stages.

In the first communication stage player 1 partially reveals (without certifying) his

information by using a random communication strategy which transmits the correct in-

formation with probability 3/4 so as to leave some doubt in player 2’s mind. That is,

he sends message m = a with probability 3/4 if the real state is k1 and with probability

1/4 if the real state if k2. Symmetrically, he sends message m = b with probability 3/4 if

the real state is k2 and with probability 1/4 if the real state if k1 (the labeling of these

two messages is irrelevant but both messages a and b are cheap talk messages: they must

be available to player 1 whatever his type). From Bayes’ rule, player 2 will believe state

k1 with probability 3/4 if he receives message a and with probability 1/4 if he receives

message b. Hence, substantive but only partial information is conveyed, without any in-

formation certification. Communication cannot stop now since, as seen before, player 1

would have an incentive to deviate by always sending message a at k1 and message b at

k2. Assume that player 2 chooses action j2 whenever he receives message b. This choice is

rational given his beliefs. Otherwise, when message a is sent, they agree on a jointly con-

trolled 1
2 − 1

2 lottery to reach the following compromise (this second communication stage

conveys no substantive information, i.e., no information about the fundamentals of the

game).3 If head (H) occurs, then communication stops and thus player 1 chooses action

j4. On the contrary, if tail (T ) occurs, then player 1 certifies his information in the last

communication stage (he sends message ck if the real state is k). Then, player 2 chooses

action j5 if c1 is sent and action j1 if c2 is sent. Player 1 has no incentive to deviate if, for

example, player 2 chooses action j3 when player 1 deviates in the last communication stage

2Notice that contrary to the previous partially revealing equilibrium, this equilibrium is based on irra-
tional choices off the equilibrium path since player 2 should not choose action j3 when player 1 reveals him
the true state of Nature (PRE2 is not subgame perfect). Again, see Subsection 7.3 for Nash equilibrium
refinements.

3A jointly controlled lottery is a mechanism that generates a uniform probability distribution on any
finite set from private random communication strategies so that a unilateral deviation does not change the
probability distribution. For example, a 1

2
− 1

2
lottery can be generated as follows: each player chooses a

message in {a, b} at random, both players announce their choices simultaneously and the outcome is head
(H) if the messages coincide and tail (T ) otherwise.
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by remaining silent. The whole communication and decision process in this equilibrium is

summarized by Figure 3 (where “JCL” stands for “jointly controlled lottery”). Player 2’s

expected payoff is 133
16 = 8.3125, and player 1’s expected payoff is 3 whatever his type.
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Figure 3: An equilibrium communication and decision tree for the introductory example.

In Section 4 we will provide geometric characterizations of all possible equilibrium

payoffs of communication games with certifiable information. For example, the previous

fully revealing equilibrium (FRE) and the two partially revealing equilibria (PRE1 and

PRE2) of the unilateral persuasion game are simply characterized by the points FRE,

PRE1 and PRE2 in Figure 7 on page 18. The non-existence of informative equilibrium

in cheap talk games (of bounded length) in which information is not certifiable is simply

characterized by the fact that the solid lines in Figure 7 never intercept. The geometric

characterization of the equilibrium described above requiring information certification as

well as multiple and bilateral communication stages is slightly more complex, and will be

illustrated in Subsection 4.4.
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3 Model

We consider two players: player 1 (the informed player, or expert) and player 2 (the

uninformed decisionmaker (DM)). J (|J | ≥ 2) is the finite action set of player 2 (player 1

has no action). K (|K| ≥ 2) is the finite set of states (or types of player 1), with a common

prior probability distribution p = (p1, . . . , pk, . . . , pK) ∈ ∆(K). Let supp[p] ≡ {k ∈ K :

pk > 0}.4 When player 2 chooses action j ∈ J and the state is k ∈ K, the payoffs to

player 1 and player 2 are Ak(j) and Bk(j), respectively.

3.1 Silent Game

The silent game, denoted by Γ(p), consists of two phases. In the information phase a

state k ∈ K is picked at random according to the probability distribution p. Player 1

is perfectly informed about the true state k, while player 2 is not. In the action phase,

player 2 chooses an action j ∈ J . Player 1 and player 2 receive payoffs Ak(j) and Bk(j),

respectively.

A strategy of player 2 in the silent game Γ(p) is a mixed action y ∈ ∆(J). We

extend payoff functions linearly to mixed actions: Ak(y) =
∑

j∈J y(j)Ak(j) and Bk(y) =
∑

j∈J y(j)Bk(j). The set of (Bayesian) Nash equilibria of the silent game Γ(p) is the

set of optimal mixed actions for player 2 in the silent game Γ(p). It is called the set of

non-revealing equilibrium outcomes at p, and is denoted by:

Y (p) ≡ arg max
y∈∆(J)

∑

k∈K

pk Bk(y)

︸ ︷︷ ︸
pB(y)

=

{
y ∈ ∆(J) :

∑

k∈K

pk Bk(y) ≥
∑

k∈K

pk Bk(j), ∀ j ∈ J

}
.

Remark 1 A pure action is always sufficient to maximize the decisionmaker’s payoff. So,

for all j, j ′ ∈ supp[Y (p)] and y ∈ ∆(J) we have pB(j) = pB(j ′) ≥ pB(y). However, mixed

actions will become useful once the action phase will be preceded by communication: (i)

on the equilibrium path, to make player 1 indifferent between several messages, and (ii)

off the equilibrium path, to punish player 1.

The resulting equilibrium payoffs are the (K + 1)-dimensional vectors (a, β), where

a = (a1, . . . , aK), ak = Ak(y) is the payoff of player 1 of type k, which is only relevant

if k ∈ supp[p], and the scalar β = pB(y) is player 2’s expected payoff (expectation over

k). Let E(p) be the set of equilibrium payoffs of Γ(p), also called the set of non-revealing

4We could assume w.l.o.g. that pk > 0 for all k ∈ K but in order to capture the games corresponding
to an updating of the prior over K, we allow pk = 0 for some k’s.
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equilibrium payoffs at p.5 That is,

E(p) ≡ {(a, β) ∈ R
K × R : ∃ y ∈ Y (p), ak = Ak(y) ∀ k ∈ supp[p], β = pB(y)}.

3.2 Unilateral Persuasion Game

Here, we consider only direct (unmediated and noiseless) and unilateral communication,

from player 1 to player 2. The set of messages available to player 1 is state-dependent and

is denoted by M(k) when his type is k. Let M 1 =
⋃

k∈K M(k) be the set of all messages

that player 1 could send. The set
⋂

k∈K M(k) is the set of all cheap talk messages available

to player 1, i.e., the set of all messages that player 1 can send whatever his type.

We assume that the set of cheap talk messages available to player 1 is nonempty. That

is, there exists m ∈ M 1 such that M−1(m) = K. This “right to remain silent” assumption

will be needed for the “only if” part (from equilibrium to dimartingale) of Theorems 1

and 2. For the “if” part (from dimartingale to equilibrium), we will further assume that

the message space and certifiability possibilities of the sender are sufficiently rich. That is,

whatever his type k, and for each event L ⊆ K containing k, player 1 can choose among a

sufficiently large set of messages certifying that his real type is in L. Formally, we assume

that

|{m ∈ M1 : M−1(m) = L}| ≥ |L| + 1, for all L ⊆ K.

Notice that this rich language and certifiability assumption implies the previous assump-

tion that the set
⋂

k∈K M(k) is nonempty (simply take L = K). As we shall illustrate in

Subsection 7.4, assuming full certifiability only for singleton events L = {k} would not be

sufficient for the “if” part of the theorems.

The signalling game determined by Γ and p, denoted by ΓS(p), is obtained by adding a

one-shot talking phase to the silent game Γ(p) before the action phase but after the infor-

mation phase. Therefore, this game corresponds to a standard persuasion game (Milgrom,

1981; Shin, 1994; Seidmann and Winter, 1997) and has three phases (see Figure 4).

Information phase

Expert learns k ∈ K

Talking phase

Expert sends message m1 ∈ M(k)

Action phase

DM chooses action j ∈ J

Figure 4: Unilateral persuasion (signalling) game ΓS(p).

5Our definition differs from Aumann and Hart’s (2003) definition when the probability of some types
vanishes. See Subsection 4.2 for a more detailed comparison.
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The extensive form representation of the unilateral persuasion game with only two

types, two cheap talk messages and one certificate for each type (M(k) = {a, b, ck}, k =

k1, k2) is given in Figure 5.

k2k1 N

b

a

b

a

2

2

· · ·· · ·

j

(
A1(j), B1(j)

)
· · ·· · ·

j

(
A2(j), B2(j)

)

· · ·· · ·

j

(
A1(j), B1(j)

) · · ·· · ·

j

(
A2(j), B2(j)

)

c21c1 1

...

...

j (
A2(j), B2(j)

)
2

...

...

j(
A1(j), B1(j)

)
2

Figure 5: Extensive form of the unilateral persuasion game ΓS(p) with two types, two
cheap talk messages and one certificate for each type (M(k) = {a, b, ck}, k = k1, k2).

A strategy for player 1 in the unilateral persuasion game is a profile σ = (σk)k∈K ,

with σk ∈ ∆(M(k)) for all k. A strategy for player 2 is a function τ : M 1 → ∆(J). A

pair of strategies (σ, τ) generates expected payoffs (a1
σ,τ , . . . , aK

σ,τ ) and βσ,τ for player 1 and

player 2, respectively. As usual, a (Bayesian) Nash equilibrium is a pair of strategies (σ, τ)

satisfying

ak
σ,τ = max

σ̃
ak

σ̃,τ for all k ∈ supp[p]; and

βσ,τ = max
τ̃

βσ,τ̃ .

Let ES(p) be the set of Nash equilibrium payoffs of ΓS(p).

3.3 Multistage, Bilateral Persuasion Game

We consider an arbitrarily large but finite number n ≥ 1 of communication rounds. In

each communication round t = 1, . . . , n each player can directly send a message to the

other. As in the unilateral persuasion game, the set of messages available to player 1 is

denoted by M(k) when his type is k, M 1 =
⋃

k∈K M(k) is the set of all messages that

player 1 could send, and
⋂

k∈K M(k) 6= ∅ is the set of all cheap talk messages available to
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player 1. The set of messages available to player 2 is denoted by M 2, with |M 2| ≥ 2.

As in the unilateral persuasion game we assume that |{m ∈ M 1 : M−1(m) = L}| ≥

|L|+1 for all L ⊆ K. However, notice that in the multistage communication game it would

be sufficient to have two cheap talk messages and that a combination of several certificates

allows to certify any event L ⊆ K.6 The above specific assumption on the richness of the

message space is only for convenience.

The bilateral persuasion game with n communication stages, determined by Γ and p, is

denoted by Γn(p). It is obtained by adding a talking phase with n bilateral communication

rounds to the silent game Γ(p) before the action phase but after the information phase (see

Figure 6). At each period t = 1, . . . , n of the talking phase, type k ∈ K of player 1 sends

a message m1
t ∈ M(k) to player 2, and player 2 sends a message m2

t ∈ M2 to player 1

(perfect monitoring). Messages are sent simultaneously.

Information phase

Expert learns k ∈ K

Talking phase (n ≥ 1 rounds)

Expert and DM send (m1
t ,m

2
t ) ∈ M(k) × M 2

(t = 1, . . . n)

Action phase

DM chooses j ∈ J

Figure 6: n-Stage bilateral persuasion game Γn(p).

A t-period history, t = 0, 1, . . . , n, is a sequence consisting of t pairs of messages,

ht = (m1
1,m

2
1, . . . ,m

1
t ,m

2
t ) ∈ (M1 × M2)

t
.

The set of all t-period histories is denoted by Mt = (M1 × M2)
t
. A strategy7 σ of player 1

in the n-period communication game Γn(p) consists of a sequence of functions σ1, . . . , σn,

where σt = (σ1
t , . . . , σ

K
t ) and σk

t : Mt−1 → ∆(M(k)) for k ∈ K and t = 1, . . . , n. A

strategy τ of player 2 consists of a sequence of functions τ1, . . . , τn, and a function τn+1,

where τt : Mt−1 → ∆(M2) for t = 1, . . . , n, and τn+1 : Mn → ∆(J).

A pair of strategies (σ, τ) generates expected payoffs aσ,τ = (a1
σ,τ , . . . , aK

σ,τ ) and βσ,τ

for player 1 and player 2, respectively. The set of (Bayesian) Nash equilibrium of the

persuasion game Γn(p) is denoted by En(p). Notice that ES(p) ⊆ En(p) ⊆ En+1(p) for all

n ≥ 1. Let EB(p) =
⋃

n≥1 En(p) be the set of Nash equilibrium payoffs of all multistage,

bilateral persuasion games determined by Γ and p.

6That is, it would be sufficient to assume that |
⋂

k∈K
M(k)| ≥ 2, and ∀ k, ∀ k′ 6= k, ∃ m ∈ M(k),

M−1(m) = K\{k′}.
7We focus on finite games with perfect recall. Hence, by Kuhn’s (1953) theorem behavioral strategies

are without loss of generality.
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4 Characterization of Equilibrium Payoffs ES(p) and EB(p)

4.1 Statement of the Results

Let H be the graph of the non-revealing equilibrium payoff correspondence, namely

H = gr E ≡ {(a, β, p) ∈ R
K × R × ∆(K) : (a, β) ∈ E(p)},

where E(p) has been defined in Subsection 3.1. Notice that the set E(p) is convex for all

p. In other words, H is convex in (a, β) when p is kept constant. However, H need not be

convex in (β, p) when a is kept constant.

For any (nonempty) set of types L ⊆ K, let

INTIRL ≡ {a ∈ R
K : ∃ y ∈ ∆(J), ak ≥ Ak(y) ∀ k ∈ L},

be the set of payoffs that are interim individually rational for player 1 when we restrict

the individual rationality constraint to a subset L of player 1’s set of types. Remark that

INTIRL ⊆ INTIRL′ whenever L′ ⊆ L. Let I be the graph of the payoffs that are interim

individually rational for player 1 in the silent game Γ(p):

I ≡ {(a, β, p) ∈ R
K × R × ∆(K) : a ∈ INTIRsupp[p]}.

As H, I is convex in (a, β) when p is kept constant, but not in p when a is kept con-

stant.8 Obviously, every non-revealing equilibrium payoff is interim individually rational

for player 1 so that H ⊆ I.

Let

H1 ≡ conva(H) ∩ I,

be the set of expected payoffs obtained from H by convexifying in (β, p) when the payoff

of player 1, a, is kept constant and is interim individually rational for player 1. Even if H

is included in I, payoffs in conva(H) need not be interim individually rational for player 1,

while this is clearly a necessary equilibrium condition. We thus have to require individual

rationality explicitly in the definition of H1.
9 It turns out that this requirement is also

sufficient for the equilibrium characterization of the unilateral persuasion game.

Theorem 1 (Unilateral Persuasion) The set ES(p) of Nash equilibrium payoffs of the

8For instance, in Example 1 in the appendix, ((0, 0), ·, p) ∈ I for p ∈ {0, 1} but not for p ∈ (0, 1).
9The restriction to supp[p] for individual rationality is irrelevant for the next theorem, but will be

important in the multistage game.
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unilateral persuasion game ΓS(p) coincides with the p-section of H1:

ES(p) = H1(p) ≡ {(a, β) ∈ R
K × R : (a, β, p) ∈ H1}.

In addition, any Nash equilibrium payoff of ΓS(p) can be obtained with at most K + 1

messages.

Proof. See Section 5.

From the proof of the “if” part of the theorem (the construction of the sender’s strat-

egy), the following proposition is immediate:

Proposition 1 Let pk > 0 for all k ∈ K. Every equilibrium of the unilateral persuasion

game ΓS(p) is outcome equivalent (i.e., it induces the same probability distribution over

player 2’s decision conditionally on k) to a “canonical” equilibrium (σ, τ) with the following

property:

For all m ∈ M 1, if σk(m) > 0 for some k ∈ K, then σk′

(m) > 0 for all k′ ∈ M−1(m).

In particular, if a cheap talk message m ∈
⋂

k∈K M(k) is sent with strictly positive

probability by player 1, then all types of player 1 send this message with strictly posi-

tive probability. More generally, the proposition says that in equilibrium we can assume

without loss of generality that if player 2’s posterior about a certain type k of player 1 is

null after some message m sent with strictly positive probability, then k /∈ M −1(m), i.e.,

message m certifies that k is not realized. In particular, all types have strictly positive

posterior probability after a cheap talk message (sent with strictly positive probability in

equilibrium). Without using the geometric characterization of Theorem 1, the intuition

of the proposition is as follows. Assume that type k ′ does not send a message m but

could have sent it (i.e., m ∈ M(k′)). Then, the types who send message m could have

sent another message instead of m that certifies that k ′ is not realized, without changing

player 2’s posteriors and so without changing the equilibrium outcome.

To get the equilibrium payoffs for persuasion games with several bilateral communica-

tion rounds, we first consider the payoffs obtained as convex combinations of elements in H1

with p fixed which are interim individually rational for player 1: H ∗
1 = convp(H1)∩I. Since

H1 ⊆ I and I is convex in (a, β) when p is fixed, convp(H1) ⊆ I so that H∗
1 = convp(H1).

We then proceed with H∗
1 as we did above with H, namely convexifying in (p, β) keeping

a constant and interim individually rational. This yields H3/2 = conva(H
∗
1 ) ∩ I. Next, by

convexifying in (a, β) at p fixed, we get H2 = convp(H3/2) = convp(H3/2)∩I. The p-section
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of the set H2 is the set of equilibrium payoffs of persuasion games with four communica-

tion rounds: a jointly controlled lottery, a step of signalling, a second jointly controlled

lottery, and a second step of signalling. Next, let H3 be the set obtained from H2 by

convexifying in (β, p) when player 1’s payoff a is fixed, and then by convexifying in (a, β)

when player 2’s belief p is fixed, with again the restriction that the payoff of player 1 is

interim individually rational for the types with a strictly positive posterior. The p-section

of the set H3 is the set of equilibrium payoffs of persuasion games with six communication

rounds. The set Hn, n ≥ 2, thus corresponds to 2n stages of “canonical” communica-

tion, in which signalling and jointly controlled lotteries alternate. We introduce a slight

disymmetry in the definition of H1, which captures a single stage of signalling for player 1.

The limit of the increasing sequence H1, H2, . . . constructed in this way is denoted by

di-co IR(H) ≡
⋃

l≥1 Hl to recall the process of diconvexification used in the construction.

Observe that, since I is not a di-convex set, di-co IR(H) need not be di-convex (see the

comparison with Aumann and Hart, 2003 in the next subsection). Points in di-co IR(H)

correspond to all equilibrium payoffs of bilateral persuasion games of bounded length. In

the next theorem, the set di-co IR(H) is expressed more elegantly as the set of starting

points of particular martingales that converge to H.

Theorem 2 (Multistage, Bilateral Persuasion) The set EB(p) of all Nash equilib-

rium payoffs from bilateral persuasion games Γn(p), n ≥ 1, coincides with the p-section of

di-co IR(H):

EB(p) = HB(p) ≡ {(a, β) ∈ R
K × R : (a, β, p) ∈ di-co IR(H)}.

Equivalently, (a, β) ∈ EB(p) if and only if there exists a martingale z = (z0, z1, . . . , zN ),

with zs = (as,βs,ps) ∈ I for all s = 0, 1, . . . , N , satisfying the following properties:

(D1) z0 = (a, β, p). That is, the starting point (and expectation) of the martingale is

the Nash equilibrium payoff under consideration.

(D2) zN ∈ H. That is, the martingale converges to the set of non-revealing equilibrium

payoffs: (aN ,βN ) ∈ E(pN ).

(D3) as+1 = as for all even s and ps+1 = ps for all odd s. That is, the martingale is

a dimartingale.10

Proof. See Section 6.

10All statements involving random variables should be understood to hold for all states occurring with
strictly positive probability.
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Remark 2 Requiring aN ∈ INTIRK guarantees as ∈ INTIRsupp[p
s
] for all s, but is

a much too strong condition: it is easy to construct an example with an equilibrium

payoff (a, β) ∈ EB(p) but aN /∈ INTIRK , K 6= supp[pN ]. On the other hand, requiring

a0 ∈ INTIRK is not sufficient. Indeed, one can easily construct a dimartingale with

a0 ∈ INTIRK , (aN ,βN ,pN ) ∈ H, but (a, β) /∈ EB(p) (as /∈ INTIRsupp[ps]
for some

history at s). More generally, the condition zs ∈ I is redundant at some stages s but

not at all of them. For instance, if s is even, as+1 = as, as ∈ INTIRsupp[ps]
, and the

fact that supp[ps+1] ⊆ supp[ps] imply as+1 ∈ INTIRsupp[ps+1]
. But the converse is not

true: one may have as+1 ∈ INTIRsupp[ps+1] without having as = as+1 ∈ INTIRsupp[ps]
.

If s is odd, ps+1 = ps, as+1 ∈ INTIRsupp[ps+1]
and the martingale property imply that

as ∈ INTIRsupp[ps]
. Again, the converse is not true. These properties explain why, starting

from the end of the process in order to construct di-co IR(H), one had to intercept with I

only when convexifying at a fixed.

Remark 3 If there exists a worst outcome for player 1 (i.e., an action jw ∈ J such that

Ak(jw) ≤ Ak(j) for all k ∈ K and j ∈ J), then the individual rationality conditions are

automatically satisfied.

4.2 Comparison with Aumann and Hart (2003)

When some coordinates of p vanish, Aumann and Hart (2003) consider the modified equi-

librium payoffs E+(p) of the silent game Γ(p), which is the same as E(p) except that when

the probability of one of player 1’s type vanishes, then the corresponding type of player 1

can only get more than his equilibrium payoff. That is, the set of modified non-revealing

equilibrium payoffs is the set of all payoffs (a, β) such that there exits an equilibrium

y ∈ Y (p) of the silent game Γ(p) satisfying

(i) ak ≥ Ak(y), for all k ∈ K;

(ii) ak = Ak(y) if pk 6= 0;

(iii) β =
∑

k∈K pk Bk(y).

The graph of the modified non-revealing equilibrium payoff correspondence is

G ≡ gr E+ ≡ {(a, β, p) ∈ R
K × R × ∆(K) : (a, β) ∈ E+(p)}.

Here, we consider the more natural set of non-revealing equilibrium payoffs, E(p), in

which it is understood that the types of player 1 which have probability zero can get any

16



payoff (only conditions (ii) and (iii) above must be satisfied) Clearly, E+(p) ⊆ E(p) and if

p has full support, both sets coincide.

Let di-co (G) be the smallest set which contains G and is convex in (a, β) (respectively

(β, p)) when p (respectively a) is fixed. Aumann and Hart (2003) characterize the set of

all equilibrium payoffs achieved with finitely many stages of bilateral cheap talk as the p-

section of di-co (G). This extremely elegant characterization relies on the identification of

the modified set of non-revealing equilibrium payoffs E+(p) for every non interior p, which

ensures that all equilibrium conditions of player 1 can be written as equalities, namely

captured by a dimartingale property. In this framework, player 1’s expected payoff remains

fully interim individually rational (in INTIRK) all along the communication process.

Our starting set H corresponds to the non-modified graph of the non-revealing equilib-

rium payoff correspondence in the sense that we do not impose any condition on player 1’s

payoff when his type has zero probability. The geometric properties of our final graph

of equilibrium payoffs are not so transparent since, as observed above, di-co IR(H) is not

necessarily convex in (β, p) when a is fixed. Obviously, this set is convex in (a, β) when

p is fixed since the players can perform jointly controlled lotteries. If player 1 can send

certificates in addition to cheap talk messages, some states of nature may be eliminated

forever. Player 1’s individual rationality conditions must thus be expressed relatively to

the remaining possible states. These individual rationality conditions are more important

than in the case of pure cheap talk because player 2 can punish player 1 if he does not

send a sufficiently precise message.

4.3 Illustration of Theorem 1 (Unilateral Persuasion)

For the introductory example, the graph of the modified non-revealing equilibrium payoff

correspondence, G = gr E+, is represented on the (a1, a2)-coordinates by solid lines in Fig-

ure 7 on the next page. The graph of the non-revealing equilibrium payoff correspondence,

H = gr E , is represented in the same figure by the solid and dashed lines. The sets G and

H are also described in the second and third columns of Table 1 on page 20. Since all

points at the north-east of (0, 0) are interim individually rational for player 1, convexi-

fying the set H by keeping a constant and interim individually rational yields three new

points at p = 1/2: FRE, PRE1 and PRE2, which are exactly the three Nash equilibrium

payoffs found in Section 2, in addition to the non-revealing equilibrium (NRE). Indeed,

each of these points corresponds to two non-revealing equilibrium payoffs, at two different

p’s forming an interval that includes p = 1/2, giving the same payoff to player 1. Notice

that, for example, the point PRE3 is not an equilibrium payoff for p = 1/2 because 1/2
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lies outside the interval [3/5, 1].
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Figure 7: Modified non-revealing equilibrium payoffs (solid lines) and interim individually
rational non-revealing equilibrium payoffs (solid and dashed lines) of the expert in the
introductory example.

4.4 Illustration of Theorem 2 (Multistage, Bilateral Persuasion)

The dimartingale corresponding to the equilibrium with three talking stages of the in-

troductory example (see Figure 3 on page 8) is represented by Figure 8 on the following

page, where the two numbers in parentheses ((1) and (2)) correspond to non-revealing

equilibrium payoffs ensuring the dimartingale property (D3) of Theorem 2. It leads to the

point j2 at p = 1/2 in Figure 7, which is not achievable at p = 1/2 with only one step of

diconvexification.

Adding a jointly controlled lottery before a signalling stage allows a convexification by

keeping p fixed. This leads to the graph H∗
1 = convp(H1) described on the a-coordinates

in the fourth column of Table 1. For example, adding a jointly controlled lottery before

a signalling stage at p = 1/2 leads to all convex combinations of equilibrium payoffs of
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Figure 8: Dimartingale/diconvexification corresponding to the equilibrium with three talk-
ing stages in the introductory example.

the unilateral persuasion game, [j3,FRE,PRE1,PRE2]. Adding a second signalling stage

allows a second convexification by keeping a fixed. One can check that this does not

yield new equilibrium payoffs, except for p ∈ (2/5, 3/5). Indeed, for p ∈ (2/5, 3/5) one can

combine the sets H∗
1 (p′) = [j2,PRE2,FRE], p′ ∈ (1/5, 2/5), and H∗

1 (p′′) = [j4,PRE3,FRE],

p′′ ∈ (3/5, 4/5), which leads to the payoffs in the triangle [j2,PRE1,FRE], which were not

achievable at p ∈ (2/5, 3/5) with only 2 communication stages. Hence, for p ∈ (2/5, 3/5),

H2(p) = H∗
1 (p)∪[j2,PRE1,FRE] = [j3,PRE2, j2,FRE]. It is easy to verify that one cannot

get new points after two steps of diconvexification in both directions, so H2 = Hn for all

n ≥ 2.

5 Proof of Theorem 1

We assume w.l.o.g. that supp[p] = K, so that ES(p) can be characterized equivalently as

the p-section of conva(H) ∩ {(a, β, p) ∈ R
K × R × ∆(K) : a ∈ INTIRK}.
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p G H H∗
1 = convp(H1) H2

0 (a1 ≥ 5, 1) (a1, 1) · · · · · ·

(0, 1
5) j1 j1 [j1,PRE2] · · ·

1
5 [j1, j2] [j1, j2] [j1, j2,PRE2] · · ·

(1
5 , 2

5) j2 j2 [j2,PRE2,FRE] · · ·
2
5 [j2, j3] [j2, j3] [j2,PRE2, j3,FRE] · · ·

(2
5 , 3

5) j3 j3 [j3,FRE,PRE1,PRE2] [j3,PRE2, j2,FRE]
3
5 [j3, j4] [j3, j4] [j3, j4,FRE] · · ·

(3
5 , 4

5) j4 j4 [j4,PRE3,FRE] · · ·
4
5 [j4, j5] [j4, j5] [j4, j5,FRE] · · ·

(4
5 , 1) j5 j5 [j5,FRE] · · ·

1 (2, a2 ≥ 6) (2, a2) · · · · · ·

Table 1: Diconvexification of the non-revealing equilibrium payoffs of the introductory

example. “· · · ” means “as in the previous column”.

5.1 From equilibrium to constrained convexification: ES(p) ⊆ H1(p)

Let (σ, τ) be any Nash equilibrium of the unilateral persuasion game ΓS(p), where pk > 0

for all k ∈ K, and let (a, β) ∈ ES(p) be the associated equilibrium payoffs. We must show

that (a, β, p) is in H1, i.e., (a, β, p) can be obtained as a convex combination of points

in H = gr E by keeping a constant and interim individually rational (a ∈ INTIRK). Let

P = Pσ,τ,p be the probability distribution on Ω = K × M 1 × J generated by players’

strategies and the priors. So,

P (m) =
∑

k∈K

pk σk(m),

is the (ex ante) probability that player 1 sends message m ∈ M 1. Let M∗ = {m ∈ M1 :

P (m) > 0}. For all m ∈ M ∗, let

pk
m = P (k | m) =

pk σk(m)

P (m)
,

be player 2’s posterior about player 1’s type after receiving message m, let pm = (pk
m)k∈K ,

and let

βm =
∑

k∈K

pk
m Bk(τ(m)),
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be the resulting expected payoff for player 2 when m is reached. Since pk =
∑

m∈M∗ P (m) pk
m

for all k ∈ K and β =
∑

m∈M∗ P (m)βm, we have

(a, β, p) =
∑

m∈M∗

P (m) (a, βm, pm).

So, to show that (a, β, p) is a convex combination of points in H be keeping a constant

it suffices to show that (a, βm, pm) ∈ H for all m ∈ M ∗, i.e., (a, βm) ∈ E(pm) for all

m ∈ M∗. Player 2’s equilibrium condition implies that τ(m) ∈ Y (pm) for all m ∈ M ∗,

so condition (iii) in the definition of E(pm) (see page 16) is satisfied for all m ∈ M ∗.

Player 1’s equilibrium condition implies that Ak(τ(m)) = Ak(τ(m′)) whenever σk(m) > 0

and σk(m′) > 0 (player 1 of type k should be indifferent between all messages that he

sends with strictly positive probability), so

ak =
∑

m∈M∗

σk(m)Ak(τ(m)) = Ak(τ(m)),

for all m such that σk(m) > 0 (which is equivalent to pk
m > 0 because pk > 0), so condition

(ii) in the definition of E(pm) is also satisfied for all m ∈ M ∗.

Remark 4 Notice that when pk
m = 0 we may have ak < Ak(τ(m)) (because type k cannot

send message m when m /∈ M(k)), so when some coordinates of pm vanish it is possible

that (a, βm, pm) /∈ G ≡ gr E+, contrary to the case of cheap talk (Aumann and Hart, 2003).

It remains to show that a ∈ INTIRK . Consider a message m ∈
⋂

k∈K M(k) (which

exists by the “right to remain silent” assumption), and let y = τ(m) (m may or may not

be a message sent by player 1 with positive probability, so there may be no rationality

condition on y for player 2 as long as no equilibrium refinement is introduced). By player 1’s

equilibrium condition, for all k ∈ K and m such that σk(m) > 0 we have ak = Ak(τ(m)) ≥

Ak(y), which proves that a ∈ INTIRK .

5.2 From constrained convexification to equilibrium: H1(p) ⊆ ES(p)

We start from (a, β, p), a convex combination of points in H by keeping a constant, with

a ∈ INTIRK and pk > 0 for all k ∈ K, and we construct an equilibrium (σ, τ) of the

unilateral persuasion game ΓS(p) with expected payoffs (a, β). Since (a, β, p) ∈ conva(H),

we can write

(a, β, p) =
∑

w∈W

π(w) (a, βw , pw),
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with π ∈ ∆(W ) and (a, βw, pw) ∈ H for all w ∈ W . Without loss of generality we assume

that π has full support. In addition, from Carathéodory’s theorem we can let |W | ≤ K +1

since the dimension of (β, p) ∈ R × ∆(K) is equal to K. For all w ∈ W , we associate

a set of types supp[pw] ≡ {k ∈ K : pk
w > 0} and a message mw ∈ M1 with mw 6= mw′

for w 6= w′, and M−1(mw) = supp[pw]. This is possible given our rich language and

certifiability assumption.

Player 1’s strategy σ. For all k ∈ K and w ∈ W define

σk(mw) =
π(w) pk

w

pk
(and σk(m) = 0 if m 6= mw for all w ∈ W ).

Player 2’s strategy τ . Since by assumption (a, βw) ∈ E(pw), for all w ∈ W we can

define (see condition (ii) and (iii) of E(pw)),

yw = τ(mw) ∈ Y (pw) such that





ak = Ak(τ(mw)) if pk
w > 0

βw =
∑

k∈K pk
w Bk(τ(mw)).

For the other messages m 6= mw, w ∈ W , since by definition a ∈ INTIRK , we can define

τ(m) = y such that ak ≥ Ak(y) for all k ∈ K.

Payoffs. We first verify that (a, β) is the payoff generated by the strategy profile (σ, τ)

defined just before. Let P = Pσ,τ,p be the probability distribution on Ω = K×M 1×J gen-

erated by those strategies and the prior, and let E = Eσ,τ,p be the associated expectation

operator. First, we check that P (mw) = π(w) for all w ∈ W :

P (mw) =
∑

k∈K

pk σk(mw) =
∑

k∈K

pk π(w) pk
w

pk
=

∑

k∈K

π(w) pk
w = π(w)

∑

k∈K

pk
w = π(w).

By construction, player 1’s expected payoff when his type is k is given by

E[Ak(j) | k = k] =
∑

w∈W

P [m = mw | k = k]E[Ak(j) | k = k,m = mw]

=
∑

w∈W

σk(mw)
∑

j∈J

τ(mw)(j)Ak(j) =
∑

w∈W

σk(mw)Ak(τ(mw)) = ak,

the last equality following from the construction of player 2’s strategy: Ak(τ(mw)) = ak
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whenever σk(mw) > 0 (⇔ pk
w > 0 because pk > 0). Finally, player 2’s expected payoff is

E[Bk(j)] =
∑

k∈K

pkE[Bk(j) | k = k]

=
∑

k∈K

pk
∑

w∈W

P [m = mw | k = k]E[Bk(j) | k = k,m = mw]

=
∑

k∈K

pk
∑

w∈W

σk(mw)
∑

j∈J

τ(mw)(j)Bk(j) =
∑

k∈K

pk
∑

w∈W

π(w)pk
w

pk
Bk(τ(mw))

=
∑

w∈W

π(w)
∑

k∈K

pk
w Bk(τ(mw)) =

∑

w∈W

π(w)βw = β.

Equilibrium condition for player 2. Next, we verify that τ is a best reply for player 2

to player 1’s strategy σ. Since we have defined τ(mw) ∈ Y (pw) for all w ∈ W , and since

the messages (mw)w∈W are the only messages sent with strictly positive probability by

player 1, it suffices to verify that pw is the correct posterior belief of player 2 when he

receives message mw. This is immediately obtained by Bayes’s rule given the definition of

the strategy σ of player 1:

P [k = k | m = mw] =
P [m = mw | k = k]P [k = k]

P [m = mw]
=

σk(mw)pk

π(w)
= pk

w.

Equilibrium condition for player 1. Finally, we verify that σk is a best reply for

player 1 of type k to player 2’s strategy τ . Player 1 of type k sends each message mw, w ∈

W , satisfying pk
w > 0 (⇔ σk(mw) > 0 because pk > 0) with strictly positive probability. By

construction of player 2’s strategy we have Ak(τ(mw)) = ak (see the previous paragraph

“payoffs”) for all such messages, so type k is indeed indifferent between all these messages.

Next, remark that type k cannot send the other messages mw satisfying pk
w = 0 because

such messages are such that M−1(mw) = supp[pw], with k /∈ supp[pw] (by the definition

of supp[pw] since pk
w = 0), so mw /∈ M(k). Finally, if player 1 sends a message off the

equilibrium path, m 6= mw for all w ∈ W (so P (m) = 0), then he gets Ak(τ(m)) = Ak(y) ≤

ak = Ak(τ(mw)) for σk(mw) > 0, so he does not deviate.

6 Proof of Theorem 2

As in the proof of Theorem 1, we assume w.l.o.g. that supp[p] = K.
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6.1 From equilibrium to constrained dimartingale: EB(p) ⊆ HB(p)

Except for the construction of player 1’s sequence of virtual payoffs and the fact that we

consider martingales that are bounded in length, this part of the proof is similar to the

proof of Hart (1985) and Aumann and Hart (2003). Let (σ, τ) be any Nash equilibrium

of the communication game Γn(p) for some finite n ≥ 1, where pk > 0 for all k ∈ K,

with payoffs a = (a1, . . . , aK) ∈ R
K for player 1 and β ∈ R for player 2. We construct

a sequence of random variables z = (z0, z1, . . . , zN ), with N = 2n, satisfying properties

(D1) to (D3) of Theorem 2, the interim individual rationality conditions z s ∈ I for all s,

and the martingale property: E[zs+1 | z0, z1, . . . , zs] = zs, s = 0, 1, . . . , N . We work

on the probability space Ω = K × Mn × J , where Mn = (M1 × M2)
n
. A realization

ω = (k,m1
1,m

2
1, . . . ,m

1
t ,m

2
t , . . . ,m

1
n,m2

n, j) ∈ Ω consists in a type for player 1, a final

communication history, and an action for player 2. All random variables (denoted in bold

letters when there may be a risk of confusion) are defined on Ω. Let P = Pσ,τ,p be the

probability distribution on Ω generated by players’ strategies and the prior probability dis-

tribution on player 1’s set of types, and let E = Eσ,τ,p be the corresponding expectation op-

erator. For example, P [k = k] = pk and P [m1
t = m | ht−1 = ht−1,k = k] = σk

t (ht−1)(m).

For s = 0, . . . , N we construct a new “half-steps” random variable on Ω, gs, that

corresponds to every history of talk, plus every history of talk followed by player 1’s

message in the next period. Formally,

gs ≡





ht = (m1
1,m

2
1, . . . ,m

1
t ,m

2
t ), if s = 2t is even, t = 0, . . . , n

(ht,m
1
t+1), if s = 2t + 1 is odd, t = 0, . . . , n − 1.

So, g0 = h0 = ∅, gN = g2n = hn, when s is even the last message in gs is from player 2,

and when s is odd the last message in gs is from player 1. We consider this new random

variable in order to have the dimartingale property (D3).

Sequence of posteriors (ps)s=0,1,...,N . For each k ∈ K and s = 0, . . . , N , define

pk
s ≡ P [k = k | gs],

and ps = (pk
s)k∈K ∈ ∆(K).

Lemma 1 The sequence (pk
s)s=0,...,N is a (bounded) martingale satisfying

(i) p0 = p;

(ii) ps+1 = ps for all odd s.
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Proof. The martingale property is simply due to the fact that (pk
s)s=0,...,N is a sequence

of posteriors by conditioning on more and more information (it is adapted to the sequence

of fields (Gs)s=0,...,N generated by (gs)s=0,...,N ). (i) is immediate: pk
0 = P [k = k | g0] =

P [k = k] = pk. To prove (ii), let s = 2t + 1 be an odd number. For each k ∈ K we have

pk
s+1 = P [k = k | gs+1] = P [k = k | ht,m

1
t+1,m

2
t+1] = P [k = k | ht,m

1
t+1] = pk

s ,

the last but one equality following from the fact that, conditional on (ht,m
1
t+1), m2

t+1

and k are independent.

Sequence of player 2’s payoff (βs)s=0,1,...,N . For each s = 0, . . . , N , define

βs ≡ E[Bk(j) | gs],

and let y = τn+1(gN ).

Lemma 2 The sequence (βs)s=0,...,N is a (bounded) martingale satisfying

(i) β0 = β;

(ii) βN =
∑

k∈K pk
N Bk(y), with y ∈ Y (pN ).

Proof. The martingale property is due to the fact that (βs)s=0,...,N is a sequence of

conditional expectations of a fixed random variable by conditioning on more and more

information. (i) is immediate by the definition of β: β0 = E[Bk(j)] = E
[
E[Bk(j) | k]

]
=

∑
k∈K pkE[Bk(j) | k = k] = β. Next, we have

βN ≡ E[Bk(j) | gN ] = E
[
E[Bk(j) | gN ,k]

]
=

∑

k∈K

P [k = k | gN ]E[Bk(j) | gN ,k = k]

=
∑

k∈K

pk
NE[Bk(j) | gN ] =

∑

k∈K

pk
NBk(τn+1(gN )),

the last but one equality following from the fact that, conditional on gN , j and k are

independent.11 The equilibrium condition of player 2 implies that y = τn+1(gN ) ∈ Y (pN ).

This completes the proof of the lemma.

At this stage, we have constructed (ps)s=0,1,...,N and (βs)s=0,1,...,N that have all the

properties required by the theorem. It remains to construct an appropriate sequence of

player 1’s payoffs, which is more delicate.

11For the last equality, remember that we have extended Bk linearly to mixed actions.

25



Sequence of player 1’s vector payoff (ak
s)s=0,1,...,N , k ∈ K. A first definition that

could come to mind for the characterization of the sequence of player 1’s payoffs is to

simply take

E[Ak(j) | gs],

which is always well defined. However, it is not relevant, in general, for type k (except when

s = N). To see this, consider a very simple example with one unilateral communication

period (N = 1), two types of equal probability (K = {k1, k2}, p1 = p2 = 1/2), and

assume that in the first talking period type k1 sends message m with probability one and

type k2 sends message m′ with probability one. After message m, player 2 chooses action

j1, and after message m′ he chooses action j2. Then, we would have E[Ak(j) | g0] =

(1/2)Ak(j1) + (1/2)Ak(j2), which is not meaningful for any type k.

A more meaningful definition of k’s expected payoff is

E[Ak(j) | gs,k = k].

Unfortunately, it is not well defined when P [gs = gs | k = k] = 0, and this can happen

even when P [gs = gs] > 0. This can be seen easily in the previous example, where

E[Ak(j) | g1 = m′,k = k1] is not well defined albeit P [g1 = m′] = 1/2 > 0.

Finally, it is worth noticing that the definition used by Aumann and Hart (2003) does

not work in our setup. Indeed, they define the (highest) payoff that player 1 of type k can

achieve against player 2’s strategy τ after the history gs as

sup
σ̃

Eσ̃,τ,p[A
k(j) | gs],

where the supremum is over all strategies σ̃ of player 1 such that Pσ̃,τ,p[gs | k = k] > 0.

But this is not necessarily well defined in our setup even when P [gs = gs] > 0 because a

history gs may contain a message (certificate) that cannot be sent by type k (for example,

g1 = m /∈ M(k)).

Hence, we follow a different, and somehow simpler, approach. For each k ∈ K, we

construct the sequence of type k’s (virtual) payoff (ak
s)s=0,1,...,N as follows. Let ak

s =

ak
s(gs). When P [gs = gs | k = k] > 0, we define

ak
s(gs) = E[Ak(j) | gs = gs,k = k],

which is unambiguously type k’s expected payoff given the history gs (and k). Clearly,

for s = 0, ak
s(gs) is always well defined: ak

0(g0) = E[Ak(j) | k = k] = ak. More generally,

26



assume inductively that ak
s(gs) is well defined, i.e., assume that P [gs = gs | k = k] > 0.

If s = 2t − 1 is odd, then gs+1 = (gs,m
2
t ), so P [gs+1 = gs+1 | k = k] > 0 when P [m2

t =

m2
t | gs = gs] > 0, which implies that ak

s+1(gs+1) remains well defined. If s = 2t is even,

then we may have a problem to define ak
s+1(gs+1) because now it is player 1’s message

that is added to the history: gs+1 = (gs,m
1
t+1). Indeed, we may have P [m1

t+1 = m1
t+1 |

gs = gs,k = k] = σk
t+1(m

1
t+1 | ht) = 0 (even when P [m1

t+1 = m1
t+1 | gs = gs] > 0), so

P [gs+1 = gs+1 | k = k] = 0. It that situation, we let

ak
s+1(gs,m

1
t+1) = ak

s(gs).

First, notice that the equilibrium condition of player 1 implies ak
s(gs) = ak

s+1(gs,m) for all

m such that σk
t+1(m | gs) > 0. Second notice that we will have the same problem in all

histories following (gs,m
1
t+1) (they have probability 0 conditional on k), so we fix more

generally k’s payoff for all these histories: ak
s+l(gs,m

1
t+1, . . .) = ak

s(gs), l = 1, 2 . . .. All

this construction can be summarized formally as follows. For each s = 0, . . . , N and k ∈ K

define the random variable f k
s as the longest subhistory of gs satisfying P [f k

s | k = k] > 0

(notice that this history necessarily ends with player 2’s message, or is equal to gs), and

let

ak
s = E[Ak(j) | fk

s ,k = k].

This definition is equivalent to,

ak
s =





E[Ak(j) | gs,k = k], if pk
s > 0

ak
r, if pk

s = 0,

where r is a random variable (stopping time) which is equal to the largest r such that

pk
r > 0.

Lemma 3 For every k ∈ K, the sequence (ak
s)s=0,...,N is a (bounded) martingale satisfying

(i) ak
0 = ak;

(ii) ak
s+1 = ak

s for all even s;

(iii) If pk
N > 0, then ak

N = Ak(y), with y ∈ Y (pN ).

Proof. To prove the martingale property we must show that E[ak
s+1 | gs] = ak

s , for all

s = 0, 1, . . . , N . If pk
s+1 = 0, then this property is immediate because by construction we

have ak
s+1 = ak

s = ak
r , where r ≤ s is the largest number such that pk

r > 0. Now, consider
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the case pk
s+1 > 0, and let s = 2t− 1 be odd (when s is even, the martingale property will

follow from (ii)). Thus, pk
s > 0 and gs+1 = (gs,m

2
t ), which implies





ak
s+1 = E[Ak(j) | gs,m

2
t ,k = k]

ak
s = E[Ak(j) | gs,k = k].

So,

E[ak
s+1 | gs] =

∑

m∈supp[τt(gs)]

P [m2
t = m | gs]E[Ak(j) | gs,m

2
t = m,k = k]

=
∑

m∈supp[τt(gs
)]

P [m2
t = m | gs,k = k]E[Ak(j) | gs,m

2
t = m,k = k]

= E[Ak(j) | gs,k = k] = ak
s ,

the second equality following from the fact that m2
t and k are independent conditional

on gs. This proves the martingale property for all odd s. Property (i) is immediate:

ak
0 = E[Ak(j) | k = k] = ak by the definition of ak. To prove (ii) let s = 2t be even,

so gs+1 = (gs,m
1
t+1). As before, when pk

s+1 = 0 the property is immediate because

ak
s+1 = ak

s = ak
r , with r ≤ s. When pk

s+1 > 0, then pk
s > 0 and gs+1 = (gs,m

1
t+1), so





ak
s+1 = E[Ak(j) | gs,m

1
t+1,k = k]

ak
s = E[Ak(j) | gs,k = k].

In such a situation these two terms are equal by the equilibrium condition of player 1 since

every message m1
t+1 player 1 of type k sends with strictly positive probability given gs

(and k = k) should yield the same expected payoff to player 1 of type k:

ak
s =

∑

m∈supp[σk

t+1
(gs)]

P [m1
t+1 = m | gs,k = k]E[Ak(j) | gs,m

1
t+1 = m,k = k]

= E[Ak(j) | gs,m
1
t+1 = m,k = k], for all m ∈ supp[σk

t+1(gs)]

= ak
s+1.

Finally, to prove (iii), assume that pk
N > 0, so

ak
N = E[Ak(j) | gN ,k = k] = E[Ak(j) | gN ]

= Ak(τn+1(gN )) = Ak(y), with y = τn+1(gN ) ∈ Y (pN ),

the second equality following from the fact that j and k are independent conditional on
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gN , and the last from the equilibrium condition of player 2.

Lemma 4 For every s = 0, 1, . . . , N we have as ∈ INTIRsupp[ps].

Proof. Let us fix a history gs such that P [gs = gs] > 0 and let supp[ps] ⊆ K, supp[ps] 6= ∅,

be the set of types with a strictly positive posterior probability: pk
s = P [k = k | gs =

gs] > 0 for all k ∈ supp[ps]. We must show that there exists y ∈ ∆(J) such that

E[Ak(j) | gs = gs,k = k] ≥ Ak(y), for all k ∈ supp[ps].

Player 1’s equilibrium condition implies (in particular) that, whatever his type k ∈ supp[ps],

if he sends the same message m ∈
⋂

k∈K M(k) in all upcoming periods t′ ≥ t (where

t = (s + 2)/2 if s is even, and t = (s + 3)/2 if s is odd), then his expected payoff in the

current period (s/2 if s is even, and (s + 1)/2 if s is odd) is not increased, so

E[Ak(j) | gs = gs,k = k] ≥ E[Ak(j) | gs = gs,m
1
t′ = m ∀ t′ ≥ t,k = k], for all k ∈ supp[ps].

The right hand side only depends on player 2’s strategy and is thus well defined. As a

consequence, given gs = gs and m1
t′ = m ∀ t′ ≥ t, which specifies the sequence of all

player 1’s messages in the talking phase, j and k are independent. This implies

E
[
Ak(j) | gs = gs,m

1
t′ = m ∀ t′ ≥ t,k = k

]
= E

[
Ak(j) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

]

= Ak
(
E

[
τn+1(gN ) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

])
.

(Remember that we have extended linearly Ak to mixed actions.) Hence, by letting

y = E
[
τn+1(gN ) | gs = gs,m

1
t′ = m ∀ t′ ≥ t

]
,

which does not depend on k (it only depends on gs and m), we have completed the proof

of the lemma.

As we have already mentioned, (ps)s=0,1,...,N and (βs)s=0,1,...,N have all the properties

required by Theorem 2 by Lemma 1 and Lemma 2. By Lemma 3 and Lemma 4, the

sequence (as)s=0,1,...,N also satisfies all the properties of the theorem. This completes the

proof of the “only if” part of Theorem 2.

29



6.2 From constrained dimartingale to equilibrium: HB(p) ⊆ EB(p)

Let z = (z0, z1, . . . , zN ) be a martingale over some probability space (F,F , π) and (finite)

sub σ-fields (Ft)t=1,...,N , satisfying the properties of Theorem 2, with pk > 0 for all k ∈ K,

and N = n. We construct a Nash equilibrium (σ, τ) of the n-stage communication game

Γn(p) with expected payoffs (a, β). First, for convenience we define the martingale z on

the nodes of a probability tree. We introduce a set W with K + 1 elements, write F as

WN , and the atoms of Ft as elements gt of W t. We thus describe the martingale z as

z = (zt(gt))t=0,1,...,n,

where for each t = 0, 1, . . . , n, gt ∈ W t, and

zt(gt) = (at(gt), βt(gt), pt(gt)) =
∑

w∈supp[π(·|gt)]

π(w | gt) zt+1(gt, w),

for all gt ∈ W t satisfying π(gt) > 0 (this is the martingale property). Notice that this

implies E[zt] = E[zt(gt)] =
∑

gt∈W t π(gt) zt(gt) = z0, t = 0, 1, . . . , n. The properties of

the martingale in Theorem 2 can be restated as follows:

(D1) z0(g0) = z0 = (a, β, p).

(D2) If π(gn) > 0, then (an(gn), βn(gn)) ∈ E(pn(gn)).

(D3) at+1(gt+1) = at(gt) for all even t and pt+1(gt+1) = pt(gt) for all odd t, if π(gt+1) > 0.

The interim individual rationality conditions for player 1 are restated as: for all t =

0, 1, . . . , n, if π(gt) > 0, then at(gt) ∈ INTIRsupp[pt(gt)].

In odd periods t, wt is associated to a message m1
t ∈ M1 of player 1 (player 2’s message

does not affect players’ decisions at these periods), and in even periods t, wt is directly

associated to a jointly controlled lottery (possibly a series of jointly controlled lotteries),

which is not explicitly formalized here.12 Therefore, a history of messages hn consists,

with some abuse of notation, in a message m1
t ∈ M1 of player 1 in each odd period t, and

in a realization wt ∈ W of one or several jointly controlled lotteries in each even period t.

Accordingly, in the remaining of the proof we only construct explicitly player 1’s strategy

σk
t+1, k ∈ K, when t is even, and player 2’s strategy in the action phase, τn+1. The set of

12The technique is standard; see, e.g., Aumann and Maschler (1995) and Aumann and Hart (2003). Note
that irrational probabilities might lead to infinitely many jointly controlled lotteries (see Subsection 7.2).
For simplicity, the reader may simply consider wt as a signal publicly observed in even periods.
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histories of the talking phase up to period t is

Mt =





(M1 × W )t/2 if t is even,

(M1 × W )(t−1)/2 × W if t is odd.

To each sequence gt = (w1, . . . , wt) ∈ W t we associate a history φt(gt) ∈ Mt, with

φt(gt) 6= φt(g
′
t) whenever gt 6= g′t, as follows:

φt(gt) = φt(w1, w2, w3, w4 . . . , wt)

= (m1(w1), w2,m3(g3), w4, . . .),

where gr = (w1, . . . , wr), r < t, is a subsequence of gt, and for all odd t, mt(gt) ∈ M1,

mt(gt−1, wt) 6= mt(gt−1, w
′
t) whenever wt 6= w′

t, and

M−1(mt(gt)) = supp[pt(gt)].

Player 1’s strategy σ. For each even period t = 0, 2, 4, . . ., each sequence gt ∈ W t with

strictly positive probability and each type k ∈ supp[pt(gt)] we construct player 1’s local

strategy σk
t+1(φt(gt)). For each w ∈ supp[π(· | gt)], define

σk
t+1(mt+1(gt, w) | φt(gt)) =

π(w | gt) pk
t+1(gt, w)

pk
t (gt)

,

and σk
t+1(m | φt(gt)) = 0 if m 6= mt+1(gt, w) for all w ∈ W .

Player 2’s strategy τ . We construct the local strategy τn+1(hn) of player 2 for each final

history of talk hn ∈ Mn, with and without strictly positive probability (players’ strategies

in the talking phase are irrelevant off the equilibrium path, but player 2’s strategy in the

action phase is very important even after 0-probability histories).

If π(gn) > 0 for gn ∈ W n, then by the second property of the martingale assumed in

the theorem, (an(gn), βn(gn)) ∈ E(pn(gn)), so we can define,

y(gn) = τn+1(φn(gn)) ∈ Y (pn(gn)) such that





ak
n(gn) = Ak(y(gn)) if pk

n(gn) > 0

βn(gn) =
∑

k∈K pk
n(gn)Bk(y(gn)).

If π(gn) = 0 for gn ∈ W n, then consider the shortest subsequence gt = (w1, w2, . . . , wt)
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of gn = (w1, w2, . . . , wn) (note: t may be 0) such that π(gt) > 0 and define

τn+1(φn(gn)) = y such that ak
t (gt) ≥ Ak(y) for all k ∈ supp[pt(gt)].

This is possible by the individual rationality conditions of the martingale.

The strategy profile (σ, τ) of the communication game Γn(p) is now completely defined

(except, as explained above, for the JCL). We next check that it generates the appropriate

expected payoffs and that it constitutes a Nash equilibrium of Γn(p). Let P = Pσ,τ,p be

the probability distribution on Ω = K×Mn×J induced by (σ, τ) and p, and let E = Eσ,τ,p

be the corresponding expectation operator.13

Lemma 5 For all t = 0, 1, . . . , n and gt ∈ W t we have:

(i) P [ht = φt(gt)] = π(gt);

(ii) P [k = k | ht = φt(gt)] = pk
t (gt) for all k ∈ K, π(gt) > 0.

Proof. By induction on t. For t = 0 property (ii) is immediate: P [k = k] = pk = pk
0(g0).

For t = 1:

(i) We have:

P [h1 = φ1(g1)] =
∑

k∈K

pkP [h1 = φ1(g1) | k = k]

=
∑

k∈K

pkσk
1 (φ1(g1)) =

∑

k∈K

pkσk
1 (m1(g1))

=
∑

k∈K

pk π(g1) pk
1(g1)

pk
= π(g1)

∑

k∈K

pk
1(g1) = π(g1).

(ii) We have:

P [k = k | h1 = φ1(g1)] =
P [h1 = φ1(g1) | k = k]P [k = k]

P [h1 = φ1(g1)]

=
σk

1 (m1(g1)) pk

P [h1 = φ1(g1)]
=

σk
1(m1(g1)) pk

π(g1)
by (i) just above

=
π(g1) pk

1(g1)

pk
0

pk

π(g1)
= pk

1(g1).

Now assume that properties (i) and (ii) are satisfied at t, and let us check them at

t + 1. We distinguish two cases: (a) t is odd, i.e., a JCL is added in t + 1; (b) t is

13Since JCL are not formalized, P and E also depend on π for the realizations wt ∈ W of JCL (public
signals) in even periods.
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even, i.e., player 1’s signal is added in t + 1. Case (a) is simpler because we can exploit

the fact that the JCL does not depend on k. In the rest of the proof of the lemma, let

gt+1 = (gt, wt+1) ∈ W t+1.

(a) (i) Since t + 1 is even we have:

P [ht+1 = φt+1(gt+1)] = P [ht+1 = (φt(gt), wt+1)]

= P [ht = φt(gt)]P [ht+1 = (φt(gt), wt+1) | ht = φt(gt)]

= π(gt)π(wt+1 | gt), by property (i) at t

= π(gt, wt+1) = π(gt+1).

(a) (ii) Since t + 1 is even we have:

P [k = k | ht+1 = φt+1(gt+1)] = P [k = k | ht+1 = (φt(gt), wt+1)]

= P [k = k | ht = φt(gt)] because wt+1 and k are independent

= pk
t (gt) by property (ii) at t

= pk
t+1(gt+1) by the third property of the martingale.

(b) (i) Since t + 1 is odd we have:

P [ht+1 = φt+1(gt+1)] = P [ht+1 = (φt(gt),mt+1(gt+1)]

= P [ht = φt(gt)]P [ht+1 = (φt(gt),mt+1(gt+1)) | ht = φt(gt)]

= π(gt)P [mt+1 = mt+1(gt+1) | ht = φt(gt)], by property (i) at t

= π(gt)
∑

k∈K

pk
t (gt)σk

t+1(mt+1(gt+1) | φt(gt))

= π(gt)
∑

k∈K

pk
t (gt)

π(wt+1 | gt) pk
t+1(gt+1)

pk
t (gt)

= π(gt)π(wt+1 | gt)
∑

k∈K

pk
t+1(gt+1)

= π(gt)π(wt+1 | gt) = π(gt, wt+1) = π(gt+1).
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(b) (ii) Since t + 1 is odd we have:

P [k = k | ht+1 = φt+1(gt+1)] =
P [ht+1 = φt+1(gt+1) | k = k]P [k = k]

P [ht+1 = φt+1(gt+1)]

=
P [ht+1 = φt+1(gt+1) | ht = φt(gt),k = k]P [ht = φt(gt) | k = k]P [k = k]

P [ht+1 = φt+1(gt+1)]

=
P [mt+1 = mt+1(gt+1) | ht = φt(gt),k = k]P [ht = φt(gt) | k = k]P [k = k]

π(gt+1)

=
σk

t+1(mt+1(gt+1) | φt(gt))P [ht = φt(gt)]P [k = k | ht = φt(gt)]

π(gt+1)
,

the last but one equality following from property (i) at t + 1, which has been checked just

before. By properties (i) and (ii) at t this yields:

P [k = k | ht+1 = φt+1(gt+1)] =
σk

t+1(mt+1(gt+1) | φt(gt))π(gt)p
k
t (gt)

π(gt+1)

=
π(wt+1 | gt) pk

t+1(gt+1)

pk
t (gt)

pk
t (gt)π(gt)

π(gt+1)
= pk

t+1(gt+1).

This completes the proof of Lemma 5.

Lemma 6 We have:

(i) E[Ak(j) | k = k] = ak for all k ∈ K;

(ii) E[Bk(j)] = β.

Proof. (i) We show by induction on t (starting from t = n) that, for t = 0, 1, . . . , n,

ak
t (gt) = E[Ak(j) | ht = φt(gt),k = k], ∀ k ∈ supp[pt(gt)]. (1)

In particular, for t = 0, this will lead to what we are required to prove:

ak = ak
0(g0) = E[Ak(j) | h0 = φ0(g0),k = k] = E[Ak(j) | k = k].

Let t = n. If k ∈ supp[pn(gn)], then, by the construction of player 2’s strategy,

ak
n(gn) = Ak(τn+1(φn(gn)))

= E[Ak(j) | hn = φn(gn),k = k],

so property (1) is satisfied for t = n. Now assume that the property is satisfied at t + 1
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and let us check it at t. Let k ∈ supp[pt(gt)]. By the martingale property, we have

ak
t (gt) =

∑

w∈supp[π(·|gt)]

π(w | gt) ak
t+1(gt, w).

We distinguish two cases: when t is odd and when t is even.

If t is odd. Then, pt+1(gt, w) = pt(gt) for all w ∈ supp[π(· | gt)], which implies

supp[pt+1(gt, w)] = supp[pt(gt)], so k ∈ supp[pt+1(gt, w)] for all w ∈ supp[π(· | gt)]. There-

fore, by the induction hypothesis, for all w ∈ supp[π(· | gt)] we have

ak
t+1(gt, w) = E[Ak(j) | ht+1 = φt+1(gt, w),k = k],

so

ak
t (gt) =

∑

w∈supp[π(·|gt)]

π(w | gt)E[Ak(j) | ht+1 = φt+1(gt, w),k = k]

=
∑

w∈supp[π(·|gt)]

P [ht+1 = (φt(gt), w) | ht = φt(gt)] E[Ak(j) | ht+1 = φt+1(gt, w),k = k]

=
∑

w∈supp[π(·|gt)]

P [ht+1 = (φt(gt), w) | ht = φt(gt),k = k] E[Ak(j) | ht+1 = φt+1(gt, w),k = k]

= E[Ak(j) | ht = φt(gt),k = k].

If t is even. Then, ak
t+1(gt, w) = ak

t (gt) for all w ∈ supp[π(· | gt)], which implies, by

the induction hypothesis,

ak
t (gt) = E[Ak(j) | ht+1 = φt+1(gt, w),k = k],

for all w such that pk
t+1(gt, w) > 0. Hence, ak

t (gt) is also equal to any average of the

previous value, so we get property (1) at t.
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(ii) Player 2’s expected payoff is

E[Bk(j)] =
∑

k∈K

pkE[Bk(j) | k = k]

=
∑

k∈K

pk
∑

hn∈Mn

P [hn = hn | k = k]E[Bk(j) | k = k,hn = hn]

=
∑

k∈K

pk
∑

hn∈Mn

P [hn = hn | k = k]
∑

j∈J

τn+1(hn)(j)Bk(j)

=
∑

k∈K

pk
∑

hn∈Mn

P [hn = hn | k = k]Bk(τn+1(hn))

=
∑

hn∈Mn

P [hn = hn]
∑

k∈K

P [k = k | hn = hn]Bk(τn+1(hn))

=
∑

gn∈W n

π(gn)
∑

k∈K

pk
n(gn)Bk(τn+1(φn(gn)), by Lemma 5

=
∑

gn∈W n

π(gn)βn(gn), by the construction of player 2’s strategy

= E[βn] = β0 = β.

This completes the proof of Lemma 6.

Lemma 7 The strategy τ of player 2 is a best reply to the strategy σ of player 1 in the

n-stage communication game Γn(p).

Proof. Since τn+1(φn(gn)) ∈ Y (pn(gn)) for π(gn) > 0 it suffices to check that pk
n(gn) =

P [k = k | hn = φn(gn)] for all k ∈ K. This as been proved in Lemma 5 (property (ii) with

t = n).

Lemma 8 The strategy σ of player 1 is a best reply to the strategy τ of player 2 in the

n-stage communication game Γn(p).

Proof. Fix t even, gt such that π(gt) > 0 and w such that π(w | gt) > 0. Assume that

player 1’s type k is such that pk
t (gt) > 0. The strategy σ prescribes to send message

mt+1(gt, w) with probability σk
t+1(mt+1(gt, w) | φt(gt)) > 0 and any message which is not

of the form mt+1(gt, w) with probability 0. By construction, player 1 of type k is not able

to send a message m of the form mt+1(gt, w
′) with pk

t+1(gt, w
′) = 0, namely a message m

that is sent along the equilibrium path but is not sent by type k. Furthermore, by the

interim individually rational condition, player 1 cannot profit from sending a message m

off the equilibrium path, namely a message m not of the form mt+1(gt, w
′). Finally, if

from stage t + 2 on, player 1 follows the prescribed strategy σ, he cannot gain at stage
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t + 1 by sending mt+1(gt, w) with a probability different from σk
t+1(mt+1(gt, w) | φt(gt)).

Indeed, by the dimartingale property (D3) on page 30 and property (1) on page 34, he is

indifferent between all the allowed messages. Hence, by an induction argument, player 1

cannot gain by manipulating the probabilities of allowed messages.

By Lemmas 6, 7 and 8, we have constructed the appropriate strategy profile. This

completes the proof of Theorem 2.

7 Discussion and Extensions

7.1 Mediated Persuasion

In this paper we assumed that communication between the expert and the decisionmaker

takes place face-to-face. This excludes correlated extraneous signals and private recom-

mendations. In particular, there is no uncertainty on the messages received by each party

during the talking phase. If a mediator were available and if any form of costless commu-

nication were possible between the players, then the resulting set of equilibrium outcomes

would be the set of certification equilibrium outcomes introduced by Forges and Koessler

(2005). Under the assumption of full certifiability made it the current paper, a single stage

of mediated certification is sufficient and the set of certification equilibrium outcomes has

a canonical representation characterized by a transition probability µ : K → ∆(J) and a

punishment strategy y ∈ ∆(J) satisfying the informational incentive constraint

Ak(µ(· | k)) ≡
∑

j∈J

µ(j | k)Ak(j) ≥ Ak(y) for all k ∈ K, (2)

and the strategic incentive constraint

∑

k∈K

pk
∑

j∈J

µ(j | k)Bk(j) ≥
∑

k∈K

pk
∑

j∈J

µ(j | k)Bk(d(j)), ∀ d : J → J

⇔
∑

k∈K

Prµ(k | j)Bk(j) ≥
∑

k∈K

Prµ(k | j)Bk(j′), ∀ j ∈ supp[µ], j ′ ∈ J.
(3)

(The proof of this claim can be found in Forges and Koessler, 2005). Let EM (p) ⊆ R
K ×R

be the resulting set of mediated certification equilibrium payoffs. This set includes the

set of equilibrium payoffs achieved with face-to-face communication, so E(p) ⊆ ES(p) ⊆

EB(p) ⊆ EM (p), and all these inclusions may be strict.

The set of communication equilibrium outcomes (Myerson, 1982; Forges, 1986) is char-
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acterized by recommendations satisfying (3) and (4):

∑

j∈J

µ(j | k)Ak(j) ≥
∑

j∈J

µ(j | k′)Ak(j) for all k, k′ ∈ K. (4)

Since condition (4) is a stronger requirement than (2), the set of certification equilibrium

outcomes also includes the set of communication equilibrium outcomes.

The analysis is much more tractable when a mediator is available to help the players

to communicate and to certify their information.14 For example, the equilibrium outcome

with three talking stages of the introductory example (see Figure 3 on page 8) can easily

be implemented with the help of a mediator as follows. First, player 1 chooses whether to

make a certifiable report to the mediator concerning the true state of the world. When

there are only two types, player 1 has two possible reports in every state k: either he

certifies his information by sending message ck or he certifies nothing. Afterwards, the

mediator gives a (random) recommendation of action to player 2 conditionally on the

report of player 1. Denote respectively by µ(j | k) and y(j) the probabilities that the

mediator recommends action j to player 2 when player 1 sends message ck and m 6= c1, c2,

respectively. The following recommendations mimic the equilibrium outcome:

µ(j4 | k1) = µ(j5 | k1) = 3/8 µ(j2 | k1) = 1/4

µ(j1 | k2) = µ(j4 | k2) = 1/8 µ(j2 | k2) = 3/4

y(j3) = 1.

If player 1 completely certifies his information and player 2 follows the recommendation

of the mediator, then no player has an incentive to deviate. Indeed, player 1 never deviates

since by certifying his information his payoff is always strictly positive, whereas by not

certifying his information his payoff would be zero. From Bayes’ rule, player 2’s beliefs

about the state of Nature given the recommendations of the mediator are Prµ(k1 | j5) = 1,

Prµ(k1 | j4) = 3/4, Prµ(k1 | j2) = 1/4 and Prµ(k1 | j1) = 0, so the recommendations are

optimal for him given his beliefs.

7.2 Persuasion without a Deadline

Throughout this paper, we assumed that an arbitrarily large maximum number of commu-

nication stages was fixed in advance, namely that players were constrained by a deadline.

14In particular, certification equilibrium outcomes can be characterized in a canonical way for Bayesian
games with any number of players, any information structure, and any assumption on certifiability possi-
bilities.
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In the case of cheap talk, Forges (1984, 1990a) shows that new equilibrium outcomes can

be reached if no deadline is imposed to the (almost surely finite) players’ conversations,

namely if the length of this conversation is endogenously determined by the equilibrium

strategies. The same phenomenon obviously occurs in the more general model of this paper

and our results are easily adapted so as to cover almost surely finite, long persuasion with-

out a deadline. One simply has to consider dimartingales which converge almost surely

in a finite, but not uniformly bounded, number of stages. Aumann and Hart (2003) go

further by considering any dimartingales, in particular those which do not almost surely

converge in finitely many stages. In Aumann and Hart’s (2003) model, time has order

ω +1; that is, there is an infinite sequence of time periods, with an additional period after

the whole sequence. This approach, which entails conceptual and technical difficulties

(see Aumann and Hart, 2003, Sections 4.2 and 8), is not, at least today, sustained by

any game-theoretical example (see however Aumann and Hart, 1986, for a mathematical

example). In the cheap talk case, Krishna (2005) provides sufficient conditions for the set

of equilibrium payoffs from infinite conversations to be the same as the set of equilibrium

payoffs from conversations which are finite with probability one.

7.3 Sequential Rationality

It is well known that in usual (one-shot, unilateral) cheap talk games, standard equi-

librium refinements do not eliminate any Nash equilibrium outcome. In particular, the

non-revealing equilibrium outcome is always a sequential equilibrium outcome. In long

cheap talk games, we are not aware of any example with a Nash equilibrium outcome that

cannot be sustained by sequentially rational strategies. But the characterization of the set

of sequential equilibrium payoffs in long cheap talk games is still an open problem.

When information is certifiable, it is very easy to construct games where the set of se-

quential equilibrium outcomes is strictly included in the set of Nash equilibrium outcomes.

For instance, player 2 is not sequentially rational off the equilibrium path when player 1

fully certifies his type in the non-revealing equilibrium of the introductory example for

p ∈ (2/5, 3/5), in the second partially revealing equilibrium (PRE2) of the introductory

example for p ∈ (0, 3/5), in the non-revealing equilibrium of Example 1 in the appendix

for p ∈ (0, 1), and in the non-revealing equilibrium of Example 2 in the appendix for

p ∈ (0, 2/3). Likewise, in Example 3 in the appendix, if we add a third action (a worst

outcome) yielding a negative payoff to both players in both states, then there would be

a fully revealing Nash equilibrium payoff which cannot be sustained by any sequentially

rational strategy for player 2.
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If we want player 2’s strategy to be sequentially rational in the action phase, then

we have to strengthen player 1’s interim individual rationality condition. That is, the

punishment strategy which is used by player 2 off the equilibrium path must be optimal

for player 2 for at least one belief over K consistent with the history of certificates sent by

player 1. More precisely, in our geometric characterizations, we should replace INTIRL by

INTIR∗
L ≡ {a ∈ R

K : ∀ M ⊆ L, ∃ pM ∈ ∆(M) and yM ∈ Y (pM ), ak ≥ Ak(yM ) ∀ k ∈ M}.

Notice that subgame perfection is obtained as a special case when events M in the

previous equation are reduced to singletons. It is also interesting to remark that with this

modification, the set of equilibrium payoffs that we obtain does not include, in general,

Aumann and Hart’s (2003) set anymore. For example, as we noticed above, non-revealing

equilibrium payoffs do not always belong to the former set.

7.4 Partial Certifiability

As we noticed in Footnote 6, our results do not require that all events are certifiable

with a single message when multiple stages of communication are allowed. However, if

the condition of the message correspondence M in Footnote 6 is not satisfied, partial

certifiability may significantly complicate the analysis and restrict the set of equilibrium

outcomes. This is true even in long persuasion games in which every single type is fully

certifiable. For example, in the silent game of Figure 9, the equilibrium payoff ((0, 1, 1), 1) ∈

ES(p) can be obtained in the persuasion game when player 1 certifies that his type belongs

to {k2, k3}, but is not an equilibrium payoff of the persuasion game if there is no message

m such that M−1(m) = {k2, k3}. The general geometric characterization of equilibrium

payoffs of long persuasion games with partially certifiable types is left for further research.

j1 j2

k1 0, 1 1,−2

k2 0, 2 1, 1

k3 0,−2 1, 1

Figure 9:
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A Appendix: Simple Examples

Example 1 (Full revelation without certification) In the silent game of Figure 10,

the non-revealing equilibria are

Y (p) =





{j1} if p > 3/4,

{j2} if p < 3/4,

∆(J) if p = 3/4.

The corresponding interim individually rational equilibrium payoffs of the expert are

represented by Figure 11 in solid lines. They coincide with Aumann and Hart’s (2003)

modified non-revealing equilibrium payoffs, so a fully revealing equilibrium (FRE) exists

in the communication game whether or not the expert’s types are certifiable.

j1 j2

k1 1, 1 0, 0 p

k2 0, 0 3, 3 (1 − p)

Figure 10: Silent game of Example 1.

0 1
0

1

2

3

p
=

3/4

p
=

1

p = 0

a1

a2

j1

j2 FRE

Figure 11: Modified and interim individually rational non-revealing equilibrium payoffs of
the expert in Example 1.

Example 2 (Full revelation with certification) In the silent game of Figure 12, the

expert always wants the decisionmaker to choose the same action whatever his type. The
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interim individually rational non-revealing equilibrium payoffs of the expert are represented

by Figure 13 in solid and dashed lines. Here, information transmission is not possible with

cheap talk only (the solid lines never intercept), while a FRE exists when the expert’s

types are certifiable.

j1 j2

k1 3, 2 1, 0 p

k2 3, 0 1, 4 (1 − p)

Figure 12: Silent game of Example 2.

0 1 2 3 4
0

1

2

3

4

p = 0

p
=

2/
3

p
=

1

a1

a2

j1

j2

FRE

Figure 13: Modified (solid lines) and interim individually rational (solid and dashed lines)
non-revealing equilibrium payoffs of the expert in Example 2.

Example 3 (No revelation) In the silent game of Figure 14, cheap talk and information

certification cannot matter. The optimal actions of the decisionmaker are the same as in

Example 2. The corresponding interim individually rational non-revealing equilibrium

payoffs of the expert are represented by Figure 15 in solid lines. The dotted lines do not

belong to the set of interim individually rational payoffs, so the persuasion game does not

admit a fully revealing equilibrium.

Example 4 (Partial revelation without certification) In the silent game of Figure 16,

the interim individually rational non-revealing equilibrium payoffs of the expert are rep-
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j1 j2

k1 3, 2 4, 0 p

k2 3, 0 1, 4 (1 − p)

Figure 14: Silent game of Example 3.

0 1 2 3 4 5
0

1

2

3

4

p = 0

p
=

2/3

p
=

1

a1

a2

j1

j2

Figure 15: Modified and interim individually rational non-revealing equilibrium payoffs of
the expert (solid lines) in Example 3.

resented by Figure 17 in solid lines. As in Example 3, this game does not admit a fully

revealing equilibrium (the dotted lines are not interim individually rational), but it has a

partially revealing equilibrium for p ∈ (3/10, 4/5).
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j1 j2 j3 j4

k1 4, 0 2, 7 5, 9 1, 10 p

k2 1, 10 4, 7 4, 4 2, 0 1 − p

Figure 16: Silent game of Example 4.

0 1 2 3 4 5
0

1

2

3

4

5

p = 0

p
=

3/10

p = 7/10

p = 4/5

p
=

1

a1

a2

PRE

j1

j2 j3

j4

Figure 17: Modified and interim individually rational non-revealing equilibrium payoffs of
the expert (solid lines) in Example 4.
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