Stochastic learning control of inhomogeneous quantum ensembles

Gabriel Turinici
IUF - Institut Universitaire de France
CEREMADE, Université Paris Dauphine - PSL Research University

June 6, 2019

Abstract
In quantum control, the robustness with respect to uncertainties in the system’s parameters or driving field characteristics is of paramount importance and has been studied theoretically, numerically and experimentally. We test in this paper stochastic search procedures (Stochastic gradient descent and the Adam algorithm) that sample, at each iteration, from the distribution of the parameter uncertainty, as opposed to previous approaches that use a fixed grid. We show that both algorithms behave well with respect to benchmarks and discuss their relative merits. In addition the methodology allows to address high dimensional parameter uncertainty; we implement numerically, with good result, a 3D and a 6D case.

PACS number(s): 03.67.a, 02.30.Yy, 03.67.Pp

1 Introduction
Quantum control is a promising technology with many applications ranging from NMR [11] to quantum computing [13] and laser control of quantum dynamics [7]. The controlling field encounters many molecules which although identical in nature may interact differently with the incoming field because of e.g., different Larmor frequencies or rf attenuation factors (in NMR spin control or quantum computing [15]), different spatial profile (see [21]) or other relaxation parameters (see [28, 8]). For obvious practical reasons, it is
of paramount importance to ensure that the control quality is robust with respect to this heterogeneity. Thus the quantum control problem involves a unique set of driving fields $u(t) \in \mathbb{R}^L$, the same for all molecules in the ensemble, however each molecule is described by a set of parameters $\theta \in \Theta \subset \mathbb{R}^d$ and the control outcome depends on both u and θ; the goal can be expressed as the maximization of the control quality averaged over θ. A different view is when the variability is not due to the presence of many different molecules but when uncertainties in the control implementation require to devise a field robust to possible fluctuations in those parameters.

A first natural question is whether this is at all possible, i.e., whether a single field can drive several distinct molecules to a common target; the answer is given by the theory of ensemble control controllability, see [26, 5, 17, 4, 6] and is in general positive. However the theory does not explain how to find the control (except under specific regimes, see [2]). To do so, different algorithms have been proposed: the pseudo-spectral approach of Li et al. [18, 25, 19] consider spectral and/or polynomial representations of the control problem in 2D ($d = 2$); Wang considers iterative procedures based on sampling [27]; the learning approach of Chen et al. [8] and Kuang et al. [16] (the latter in the context of time-optimal control) consider a fixed uniform grid over the inhomogeneous parameter space and was tested for $d = 2$.

In all previous works there is always a fixed grid (or fixed sampling) involved when the control is searched. The rationale behind this idea is that a fixed grid makes the search more stable and a good choice of the grid is enough to describe efficiently the mean performance of the control over the parameter space in the spirit of a quadrature formula for the average over θ. This is coherent with results from the approximation theory which informs that convergence is of order $e^{-\frac{1}{\sqrt{N}}}$, with respect to the number N of grid points; however the same formula indicates a bad scaling with respect to d. To address this curse of dimensionality and also explore the nature of the search landscape, we take here a different view: at each control iteration we use a new sampling in the spirit of Monte Carlo methods (see [20, Section 7.7]) for computing high dimensional integrals. This will induce slight oscillations in the average but has the advantage to cover the space Θ of inhomogeneity even in high dimensions d.

The procedure we propose is detailed in the next section and the numerical implementation results are the object of Section 3.
2 Algorithms for ensemble quantum control

We consider a control $u(t) = (u_1(t), ..., u_L(t)) \in \mathbb{R}^L$ acting on a molecule part of a larger ensemble. Each molecule is completely characterized by some inhomogeneity parameter $\theta \in \Theta \subset \mathbb{R}^d$ and suppose given a distribution law $P(\theta)$ on Θ (which can be the uniform distribution or any other). All molecules are subjected to the same control $u(t)$ during the time interval $[0, T]$ in order to reach some target.

2.1 Evolution equations

The dynamics of each molecule in the sample is governed by the Hamiltonian $H(\theta, u) = H_0(\theta) + \sum_{t=1}^L u_t(t) H_t(\theta)$ through the Schrödinger equation:

$$i \frac{d}{dt} \psi(t; \theta) = H(\theta, u) \psi(t; \theta),$$

where ψ is the wave-function of the molecule. Of course, ψ depends on u but for notational convenience we omit to write explicitly this dependence from now on. Once a finite dimensional basis $\{|j\rangle, j = 1, ..., N\}$ is chosen, the state of the quantum system can be represented as $|\psi(t; \theta)\rangle = \sum_{j=1}^N c_j(t; \theta) |j\rangle$. Denoting $C(t; \theta) = (c_0(t; \theta), ..., c_N(t; \theta))^T$ the vector of coefficients C satisfies the equation:

$$\frac{d}{dt} C(t; \theta) = X(\theta, u) C(t; \theta),$$

where X is the representation of the Hamiltonian H (including the $1/i$ factor) in the basis $|j\rangle$, $j = 1, ..., N$.

Note that same setting also applies to non-linear Hamiltonians e.g. Bose-Einstein condensates (nonlinearity in ψ), or high order control terms [10, 9] (non-linearity in u).

The quantum system can also be described in terms of a density matrix $\rho(t; \theta)$; this matrix is expressed in some basis for operators. Same happens when the molecule is coupled to a bath or when relaxation phenomena are at work, see [1]; in both cases the coefficients of this expansion follow an equation similar to (2).
2.2 Optimization by stochastic gradient descent and Adam algorithms

The control goal is encoded as the minimization, with respect to u, of an error, or "loss" functional $\mathcal{L}(u, \theta)$ depending on the control u and the Hamiltonian parameters θ. When all the ensemble is considered, the following loss functional is to be minimized:

$$J(u) = \int_\Theta \mathcal{L}(u, \theta) P(d\theta).$$ \hspace{1cm} (3)

The stochastic optimization algorithms described below construct an iterative process in order to find the u that minimizes (3).

Historically the first to be considered, the stochastic gradient descent algorithm [23] (henceforth called SGD) consists in the following procedure:

1. Choose a learning rate $\alpha > 0$, a mini-batch size $M > 0$ and the initial control u^0.
2. Set iteration counter $k = 0$.
3. Draw M independent parameters $\theta_1^k, ..., \theta_M^k$ from the distribution $P(\theta)$ and compute the approximation $g^k := \frac{1}{M} \sum_{m=1}^{M} \nabla_u \mathcal{L}(u^k; \theta_m^k)$ of the gradient $\nabla_u J(u^k)$ of $J(\cdot)$ at u^k.
4. set $u^{k+1} = u^k - \alpha g^k$ and $k = k + 1$.
5. Unless some stopping criterion is satisfied return back to step 3.

In order to accelerate the convergence of the SGD algorithm, several improvements have been proposed (see [24]) among which the Adam [14] variant which proved to be one of the most efficient and very scalable. The difference between Adam and SGD is that Adam uses a different learning rate for each parameter which is tuned as follows: when the uncertainty in the gradient is large the learning rate is taken to be small and contrary otherwise. In order to have a robust estimation for the gradient (in absolute value) a Exponential Moving Average is computed on the fly (see below). It can be described as:

1. Choose the learning rate $\alpha > 0$, the EMA parameters β_1 and β_2, the mini-batch size $M > 0$, the epsilon $\epsilon > 0$ and the initial control u^0.

2. Set iteration counter \(k = 0 \), first moment estimate \(\mu = 0 \), second moment estimate \(v = 0 \).

3. Set \(k = k + 1 \).

4. Draw \(M \) independent parameters \(\theta_1^k, ..., \theta_M^k \) from the distribution \(P(\theta) \) and compute the approximation \(g^k := \frac{1}{M} \sum_{m=1}^{M} \nabla u \mathcal{L}(u^{k-1}; \theta_m^k) \) of the gradient \(\nabla u \mathcal{J}(u^{k-1}) \) of \(\mathcal{J}(\cdot) \) at \(u^{k-1} \).

5. Compute the moving averages \(\mu^k := \beta_1 \mu^{k-1} + (1 - \beta_1) g^k, v^k := \beta_2 v^{k-1} + (1 - \beta_2) |g^k|^2 \).

6. Compute bias-corrected moment estimates: \(\hat{\mu}^k = \mu^k / (1 - (\beta_1)^k), \hat{v}^k = v^k / (1 - (\beta_2)^k) \).

7. set \(u^k = u^{k-1} - \alpha \hat{\mu}^k / (\sqrt{\hat{v}^k} + \epsilon) \).

8. Unless some stopping criterion is satisfied return back to step 3.

3 Numerical results

We test the performance of the algorithms in Section 2.2 for several benchmarks from the literature (or that generalize cases from the literature).

In the situations considered below, the goal is to maximize the so-called fidelity. For sections 3.1 and 3.2 this has the formula \(|\langle C(T; \theta), C_{\text{target}} \rangle| \) where \(C_{\text{target}} \) is a prescribed target state. But this expression is not differentiable everywhere and numerically it is easier to replace it with its square. Moreover, to express the problem as a minimization, a \(-1 \) multiplicative constant is introduced and 1 added to the result in order to have it positive. So the cost functional \(\mathcal{J} \) will be the mean, over \(\theta \in \Theta \) of the error in the fidelity squared; however, in the numerical results, we will plot the error in the fidelity itself; the reason why not plotting the fidelity (instead of the error) is that the error can be very small (as in Section 3.1) and the results are easier to compare on a logarithmic scale. The fidelity is computed as the average over \(M = 300 \) random independent parameters drawn from the distribution \(P(\theta) \).

Finally, in order to compare our algorithm with those from the literature, we take as indicator of the numerical effort the number of gradient \(\nabla u \mathcal{L}(u; \theta) \) evaluations; for instance one iteration of SGD or Adam algorithms count as
M gradient evaluations. In all situations we used for the Adam algorithm the standard values $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1e^{-8}$.

3.1 Two level inhomogeneous ensemble

Consider an ensemble of spins as in [8, section III.]. The spins have different Larmor frequencies ω in the range $[0.8, 1.2]$ and the controls ($L = 2$) have multiplicative homogeneities $\epsilon \in [0.8, 1.2]$; we set $\theta = (\omega, \epsilon)$ and with the previous notations the dynamics corresponds to the equation:

$$
\begin{pmatrix}
\dot{c}_1(t; \theta) \\
\dot{c}_2(t; \theta)
\end{pmatrix}
=
\begin{pmatrix}
0.5\omega_i & 0.5\epsilon(u_2(t) - iu_1(t)) \\
-0.5\epsilon(u_2(t) - iu_1(t)) & -0.5\omega_i
\end{pmatrix}
\begin{pmatrix}
c_1(t; \theta) \\
c_2(t; \theta)
\end{pmatrix}.
$$

(4)

The initial state of each member of the quantum ensemble is set to $|\psi_0\rangle = |0\rangle$; i.e., $C_0 = (1, 0)^T$, and the goal is to reach the target state $|\psi_{\text{target}}\rangle = |1\rangle$; i.e., $C_{\text{target}} = (0, 1)^T$. The objective is encoded as the requirement to minimize:

$$
J(u) = \frac{1}{2} \left(1 - \int_{\Theta} |\langle C(T; \theta), C_{\text{target}} \rangle|^2 P(d\theta) \right).
$$

(5)

The total time is $T = 2$ is divided into $Q = 200$ time steps, of length $\Delta t = T/Q = 0.01$ each. The initial choice for the control u is $u^{k=0}(t) = \{u_1^0(t) = \sin t, u_2^0(t) = \sin t\}$.

Several mini-batch sizes $M = 4, 8, 16$ and 32 are tested and compared with implementation in [8, section III.A.] where a 2D uniform grid of 5×5 values for θ is chosen. In all cases very good convergence results are attained. We plot in Figure 1 the results for $M = 4$ and learning rate $\alpha = 500$ relative to the convergence with the uniform 5×5 grid. Note that α was optimized to obtain the best possible results for the fixed grid algorithm and indeed the results are better than those in [8, section III.A.]. But similar conclusions are reached for any value of α. An acceleration with a factor of 5 is obtained, essentially due to the fact that each SGD iteration uses only $M = 4$ gradient evaluations. Note that the SGD algorithm oscillates but these oscillations can be cured by lowering α (or stopping the search) as soon as a good result is obtained.

3.2 A three level Λ atomic ensemble

In this section we test a Λ atomic ensemble from [8, Section IV] which can be written as a 3-level system with the following dynamics:
Figure 1: Convergence for the numerical case in Section 3.1. Top image: mean fidelity error. Bottom image: maximum (over the sample) fidelity error. We consider two algorithms: a fixed uniform 2D grid ($M = 25$) as in [8, section III.A.] and the SGD algorithm with $M = 4$. This latter approach converges about 5 times faster: the mean fidelity error of $2.0e-3$ is obtained after 1250 gradient evaluations of the fixed grid algorithm and after 250 evaluations of the SGD algorithm with $M = 4$. Same for other levels of errors.
Figure 2: Convergence for the numerical case in Section 3.2. Top image: mean fidelity error. Bottom image: maximum (over the sample) fidelity error. We consider two algorithms: a fixed uniform 2D grid \((M = 25)\) as in [8, section IV.] and the SGD algorithm with \(M = 4\). This latter approach converges about 7 times faster: the convergence settles in after \(17'500\) gradient evaluations of the fixed grid algorithm compared with cca. \(2'500\) evaluations of the SGD algorithm.

\[
\begin{pmatrix}
\dot{c}_1(t; \theta) \\
\dot{c}_2(t; \theta) \\
\dot{c}_3(t; \theta)
\end{pmatrix}
= \begin{pmatrix}
-1.5\omega i & 0 & -ieu_2(t) \\
0 & -\omega i & -ieu_1(t) \\
-ieu_2(t) & -ieu_1(t) & 0
\end{pmatrix}
\begin{pmatrix}
c_1(t; \theta) \\
c_2(t; \theta) \\
c_3(t; \theta)
\end{pmatrix},
\tag{6}
\]

where \(\omega\) and \(\epsilon\) have uniform distributions in \([0.8, 1.2]\). The objective is to find a control \(u(t) = (u_1(t), u_2(t))\) which drives all the inhomogeneous members from \(|\psi_0\rangle = \frac{1}{\sqrt{3}}(|1\rangle + |2\rangle + |3\rangle)\) (i.e., \(C_0 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})\)) to \(|\psi_{\text{target}}\rangle = |3\rangle\) (i.e., \(C_{\text{target}} = (0, 0, 1)\)); the objective is encoded as the minimization of (5).

We plot in Figure 2 the results for \(M = 4\) and learning rate \(\alpha = 100\) relative to the convergence with an uniform grid as in [8, section IV.]. The acceleration factor is around 7.
As argued before, methods from the literature may have difficulties to address high dimensional parameters, and often limit to two dimensional \((d = 2)\) inhomogeneities. In order to test the full power of our method, we consider two situations that extend cases treated in the literature but have never been treated before. The first test is a three dimensional \((d = 3)\) example which addresses the coherence transfer between two spins without cross-correlated relaxation, taken from [25, Section III.B.1. eq(15)] (but with an additional inhomogeneity dimension). For a general treatment of the relaxation terms and the formulation of this equation see [1]. The spins display control inhomogeneity described by the parameter \(\epsilon\) as above but there is also variation in the relaxation rate and coupling constant, which, denoting \(\theta = (\epsilon, J, \xi)\) results in the dynamical system:

\[
\begin{bmatrix}
\dot{c}_1(t; \theta) \\
\dot{c}_2(t; \theta) \\
\dot{c}_3(t; \theta) \\
\dot{c}_4(t; \theta)
\end{bmatrix} =
\begin{bmatrix}
0 & -\epsilon u_1(t) & 0 & 0 \\
\epsilon u_1(t) & -\xi & -J & 0 \\
0 & J & -\xi & -\epsilon u_2 \\
0 & 0 & \epsilon u_2 & 0
\end{bmatrix}
\begin{bmatrix}
c_1(t; \theta) \\
c_2(t; \theta) \\
c_3(t; \theta) \\
c_4(t; \theta)
\end{bmatrix}.
\]

Note that here the vector \(C\) has real entries as the description above is based on the representation of the density matrix in a basis for operators, see [1, 11, 12] for details. On the other hand also note that the dynamics is not reversible (relaxation is present) and the equations do not correspond to a unitary evolution.

The inhomogeneities \(\theta = (\epsilon, J, \xi)\) are uniformly distributed in \(\Theta = [0.9, 1.1] \times [0.5, 1.5] \times [0, 2]\). The final time \(T = 7\pi/6\) is discretized with \(Q = 200\) uniform time steps. The control is initialized as before. The initial state is encoded as \(C_0 = (1, 0, 0, 0)\) and the target is to minimize the integral:

\[
J(u) = 1 - \int_{\Theta} c_4(T; \theta) P(d\theta)
\]

(a three-dimensional integral).

We will therefore consider the control quality relative to this best attainable performance. The results are in Figures 3 and 4. Note that although for each \(\theta\) taken individually the figure \(F_{\text{max}}(\theta)\) can be attained with a pair (recall \(L = 2\)) of suitable control fields, it is unknown whether a unique control pair
Figure 3: Convergence for the numerical case in Section 3.3. The quantity plotted is the following: for each $\theta \in \Theta$ we consider the fidelity error in percentage relative to the maximum attainable figure $F_{max}(\theta)$ and then take the mean over $\theta \in \Theta$. We set $M = 4$; for the SGD algorithm we choose $\alpha = 10.0$ and for the Adam algorithm we set $\alpha = 0.01$. The continuous (−) and dotted (·) curves stand for the mean fidelity errors of the plain SGD and Adam algorithm respectively; the convergence is similar and a 95% mean target relative fidelity (or equivalently 5% mean target relative fidelity error) is obtained. For the controls see Figure 4.

exists ensuring 100% (relative to $F_{max}(\theta)$) target yield simultaneously for all $\theta \in \Theta$. In practice we did not find any, irrespective of the algorithm hyper-parameters such as α, the maximum number of iterations etc.; we conclude on one hand that this ensemble is not 100% simultaneously controllable and on the other hand that our procedure improves significantly the robustness of the control with respect to $\theta \in \Theta$ from an initial value of 67% up to 95%. Note that the results from the literature (which only consider 2 dimensional inhomogeneity) do not obtain 100% control either (exact figure is not reported).

3.4 A 6D example: two spin systems with cross-correlated relaxation

We continue here to address new systems that previous methods could not treat. We consider an ensemble of two spin systems with cross-correlated
relaxation as in [18, Section III.A.2.], [25, Section III.B.2 eq. (16)] and also [27, Example 3], [1].

The spins display control inhomogeneity described by the parameters \(\epsilon_1 \) and \(\epsilon_2 \) and there is also variation in the auto-correlated relaxation rate \(\xi_a \), the quotient \(\xi_c/\xi_a \) of the cross-correlation relaxation rate \(\xi_c \) with respect to the autocorrelated relaxation rate \(\xi_a \) and finally, a dispersion in the Larmor frequencies of each spin. Denoting \(\theta = (\epsilon_1, \epsilon_2, \omega_1, \omega_2, \xi_a, \xi_c/\xi_a) \in \Theta = [0.9, 1.1]^2 \times [0, 1]^2 \times [0.75, 1.25] \times [0.7, 0.9] \), the dynamical system can be written:

\[
\begin{bmatrix}
\dot{c}_1(t; \theta) \\
\dot{c}_2(t; \theta) \\
\dot{c}_3(t; \theta) \\
\dot{c}_4(t; \theta) \\
\dot{c}_5(t; \theta) \\
\dot{c}_6(t; \theta)
\end{bmatrix} =
\begin{bmatrix}
0 & -\epsilon_1 u_1(t) & \epsilon_2 u_2(t) & 0 & 0 & 0 \\
\epsilon_1 u_1(t) & -\xi_a & \omega_1 & -J & -\xi_c & 0 \\
-\epsilon_2 u_2(t) & -\omega_1 & -\xi_a & -\xi_c & J & 0 \\
0 & J & -\xi_c & -\xi_a & \omega_2 & -\epsilon_2 u_2(t) \\
0 & -\epsilon_1 u_1(t) & -J & -\omega_2 & -\xi_a & \epsilon_1 u_1(t) \\
0 & 0 & 0 & \epsilon_2 u_2(t) & -\epsilon_1 u_1(t) & 0
\end{bmatrix}
\begin{bmatrix}
c_1(t; \theta) \\
c_2(t; \theta) \\
c_3(t; \theta) \\
c_4(t; \theta) \\
c_5(t; \theta) \\
c_6(t; \theta)
\end{bmatrix}.
\] (8)

As in section 3.3 the vector \(C \) has real entries see [11, 12, 1] for details; the dynamics is not reversible (relaxation is present) nor unitary.

We set \(J = 1 \); the total time \(T = 5 \) is discretized with \(Q = 200 \) uniform time steps. The control is initialized as before. The initial state is encoded as

Figure 4: Converged controls for the SGD (up) and Adam (bottom) for the situation in in Section 3.3 (for the convergence see Figure 3). Controls obtained with the SGD algorithm are smoother than those from the Adam algorithm.
Figure 5: Convergence for the numerical case in Section 3.4. The quantity plotted is defined as in the Figure 3. We set $M = 4$; for the SGD algorithm we choose $\alpha = 10.0$ and for the Adam algorithm we set $\alpha = 0.01$. The continuous (−) and dotted (·) curves stand for the mean fidelity errors of the plain SGD and Adam algorithm respectively; the convergence is similar and 91% mean relative fidelity is obtained. For the controls see Figure 6.

$C_0 = (1, 0, 0, 0, 0, 0)$ and the target is to minimize $J(u) = 1 - \int_{\Theta} c_0(T; \theta) P(d\theta)$ (a six-dimensional integral). In this case too, the best attainable performance for a single molecule is known (see [11, 12]) and defined by $F_{\text{max}}(\theta) = \sqrt{1 + \eta^2} - \eta$ where $\eta = \sqrt{\frac{\xi a - \xi c}{\xi a + \xi c}}$.

The simulation results are in Figures 5 and 6. Same conventions are kept as in the previous section (fidelity is relative to maximum attainable figure) and same considerations still apply: 100% simultaneous controllability does not seem attainable but significant improvement in the robustness is obtained (91% up from −8%).

3.5 Stochastic convergence behaviours

The convergence of the stochastic algorithms can have two important regimes:

1. first, when all members of the ensemble can be simultaneously optimized to 100%; in our situation this is equivalent to simultaneous controllability. In this case convergence is ”easier” because it is ”enough” to follow the gradient for each parameter value in order to converge;
at convergence all gradients (as distribution with respect to ω), will collapse to (in practice will be close to) a Dirac mass.

2. secondly, when members of the ensemble cannot be simultaneously optimized; in this case, reaching full control for some θ value will harm the quality of some other parameter values $\theta' \neq \theta$. At convergence gradients will not be distributed as a Dirac mass any more, but the average with respect to theta will be zero (in practice small).

We illustrate this behavior in figures 7 and 8 where we plot the histograms of the gradient (with respect to the first field) $\nabla_{u_1(t)} J(u(t_n), \theta)$ as random variables of θ at some time snapshots t. It is noticed that while in the first example it is possible to reduce significantly the gradient absolute value for all members of the sample (because simultaneous controllability holds true), in the second test case this reduction reaches a limit and the algorithm tries instead to center the gradients on zero so that the average be as low as possible.
Figure 7: Histogram of the gradients $\nabla_{u_1(t)} J(u(t_n), \theta)$ computed with $M = 300$ random values $\theta_1, ..., \theta_M$. Six time instants t are chosen uniformly in $[0, T]$: $t = 0$, $T/5$, $2T/5$, ..., T. In red are the gradients at $u = u^1$ (iteration $k = 1$) and in blue the gradients at $u = u^{500}$ (iteration $k = 500$). Here we consider the case in Section 3.1, see Figure 8 for the test case in Section 3.4.

Figure 8: Histogram of the gradients as in Figure 7 except that here the results correspond to the test case in Section 3.4.
4 Discussion and conclusion

We proposed and tested in this work a stochastic approach to compute the optimal controls of inhomogeneous quantum ensembles. The algorithms have been employed before in other areas of stochastic optimization but have never been tested in this context. Their specificity is to draw at each iteration a new set of parameters from the inhomogeneous distribution. Although at first the intuition may not recommend such an approach, the numerical results indicate not only convergence but also faster convergence than methods based on fixed samples. In addition our method can address situations when the space of parameters is large and was tested successfully on a 6-dimensional example.

If one is to compare the two algorithms, we observe that SGD performs well for favorable situations (as in Sections 3.1 and 3.2) where it accelerates the computations because it allows to use a low value of M. For more complex situations its performance is due to more nonlinear effects. In contrast, the Adam algorithm has the advantage to be more robust with respect to the choice of the learning rate α, but the controls are less regular.

*

A Gradient computation

We detail below the computation of the gradient for a single parameter θ, the general case being just a mean over θ. Consider the so-called adjoint state $\lambda(t; \theta)$; it is defined at the final time as the derivative of the outcome with respect to $C(T; \theta)$. For instance, for sections 3.1 - 3.2: $\lambda(T; \theta) = -\langle C_{\text{target}}, C(T, \theta) \rangle C_{\text{target}}$ while for sections 3.3 - 3.4 we set $\lambda(T; \theta) = -1$. Then for $t < T$, $\lambda(t; \theta)$ is the solution of the (backward) equation $\frac{d}{dt} \lambda(t; \theta) = X(t, \theta)^{\dagger} \lambda(t; \theta)$, where $X(t, \theta)^{\dagger}$ is the transpose conjugate of X when X has complex entries (examples 3.1 and 3.2) and reduces to the transpose when X is a real matrix (examples 3.3 and 3.4). Then $\nabla_{u(t)} J = \langle \lambda(t; \theta), \frac{\partial X(t; \theta)}{\partial u(t)} C(t; \theta) \rangle$.

In practice, given that u is discretized, the state C and the adjoint state λ are also discretized at time instants $t_n = n\Delta t$: $C_n(\theta) \simeq C(t_n; \theta)$, $\lambda_n(\theta) \simeq \lambda(t_n; \theta)$ which satisfy $C_{n+1}(\theta) = e^{\Delta t X(u(t_n); \theta)} C_n(\theta)$ and $\lambda_n(\theta) = e^{\Delta t X(u(t_n); \theta)^{\dagger}} \lambda_{n+1}(\theta)$ and the exact discrete gradient is $\nabla_{u(t_n)} J = \langle \lambda_{n+1}(\theta), \frac{\partial e^{\Delta t X(u(t_n); \theta)}}{\partial u(t_n)} C_n(\theta) \rangle$.

Finally, in order to compute $\frac{\partial e^{\Delta t X(u(t_n); \theta)}}{\partial u(t_n)}$ we use a "divide and conquer" approach coupled with a 8-th order expansion as in [3, formula (11)] to
obtain at the same time the exponential and the gradient ([22, Chapter VI]) from the knowledge of the inputs \(X(u(t_n); \theta) \) and \(\frac{\partial X(u(t_n); \theta)}{\partial u_k(t_n)} \).

References

