
Metadata Inference for Document Retrieval
in a Distributed Repository ?

Philippe Rigaux Nicolas Spyratos

LAMSADE LRI
Univ. Paris-Dauphine Univ. Paris-Sud Orsay, France

philippe.rigaux@dauphine.fr spyratos@lri.fr

Abstract. This paper describes a simple data model for the composition and
metadata management of documents in a distributed setting. We assume that each
document resides at the local repository of its provider, so all providers’ repos-
itories, collectively, can be thought of as a single database of documents spread
over the network. Providers willing to share their documents with other providers
in the network must register them with a coordinator, or mediator, and providers
that search for documents matching their needs must address their queries to the
mediator. The process of registering (or un-registering) a document, formulating
a query to the mediator, or answering a query by the mediator, all rely on docu-
ment content annotation.
Content annotation depends on the nature of the document: if the document is
atomic then an annotation provided explicitely by the author is sufficient, whereas
if the document is composite then the author annotation should be augmented by
an implied annotation, i.e., an annotation inferred from the annotations of the
document’s components.
The main contributions of this paper are:

1. providing appropriate definitions of document annotations;
2. providing an algorithm for the automatic computation of implied annota-

tions;
3. defining the main services that the mediator should support.

1 Introduction

In this paper, we propose a simple data model for the composition and metadata man-
agement of documents in a distributed setting where a community of authors co-operate
in the creation of documents to be used also by other authors. Each author is a “provider”
of documents to the network but also a “consumer”, in the sense that he creates doc-
uments based not only on other documents that he himself has created but also on
documents that other authors have created and are willing to share. We envisage several
possible domain applications for this framework, and in particular e-Learning systems
where instructors and learners create and share educational material [16, 19, 15]. In a
nutshell, our approach can be described as follows.

? Research supported by the EU DELOS Network of Excellence in Digital Libraries and the EU
IST Project (Self eLearning Networks), IST-2001-39045.

We distinguish documents into atomic and composite. Intuitively, an atomic docu-
ment is any piece of material (text, image, sound, etc.) that can be identified uniquely;
its nature and granularity are entirely up to its author. A composite document consists
of a set of parts, i.e., a set of other documents that can be either atomic or composite.
We assume that each document resides at the local repository of its author, so all au-
thors’ repositories, collectively, can be thought of as a database of documents spread
over the network. Typically, an author wishing to create a new document will use some
of the documents in his local database as components and will also search for relevant
documents available over the network.

Authors willing to share their documents with other authors in the network must
register them with a coordinator, or mediator, and authors that search for documents
matching their needs must address their queries to the mediator. The process of regis-
tering (or un-registering) a document, formulating a query to the mediator, or answering
a query by the mediator, all rely on document content annotations.

Such annotations are actually sets of terms from a controlled vocabulary, or tax-
onomy, to which all authors adhere. The well known ACM Computing Classification
System [1] is an example of such a taxonomy. In this respect, we distinguish three
kinds of annotation: the author annotation, the implied annotation and the registration
annotation.

During registration of a document at the mediator, its author is required to submit
the following items:

1. The document identifier, say d; this can be a URI allowing to access the document.
2. An annotation of the document content, that we call the author annotation of d; if

d is atomic then the author annotation must be nonempty, whereas if d is composite
then the author annotation can be empty.

3. If d is composite, then registration requires, additionally, the submission of all parts
of d (i.e., all documents that constitute the document being registered); using the
annotations of these parts, the mediator then computes automatically an annota-
tion that “summarizes” the annotations of the parts, and that we call the implied
annotation of d.

To register a document the mediator uses the author annotation augmented by the
implied annotation, after removing all redundant terms (i.e., terms that are subsumed by
other terms). The final set of terms used for registration is what we call the registration
annotation.

The mediator is actually a software module that can be seen as one component
of a digital library serving a number of subscribers (the “consumers”). A digital library
maintains pointers to documents stored at the repositories of their authors. The mediator
allows all subscribers to search for and consult documents of interest. Additionally, it
allows authors to reuse documents of the library as components of new documents that
they create. Of course, apart from the mediator services, a digital library offers a number
of other services to its users, such as profiling, recommandations, personalization, and
so on. However, in this paper, we focus only on the mediator services.

The mediator, actually, maintains a catalogue of registered documents: during reg-
istration of a document with identifier d, the mediator inserts in the catalogue a pair

(t, d), for each term t in the registration annotation of d. Authors searching for docu-
ments that match their needs address their queries to the mediator. In turn, the mediator
uses the catalogue to answer such queries.

The main issues addressed in this paper are:

1. providing appropriate definitions of document annotations;
2. providing an algorithm for the computation of implied annotations;
3. defining the main services that the mediator should support.

This paper proposes generic solutions to the above issues, i.e., solutions that are
valid independently of questions concerning network configuration. In other words, the
solutions that we provide are still valid whether the network is configured around a
central mediator, or whether it is organized in clusters, each cluster being served by a
separate mediator, or even whether there is no mediator but each node plays the role of
a mediator for all its connected nodes (as in pure peer-to-peer network [11]).

Work in progress aims at:

1. validating our model in the context of a prototype, in which the documents are
XML documents;

2. embedding our model in the RDF Suite [2];
3. integrating our annotation generating algorithms into a change propagation module

to be integrated in the mediator.

We stress the fact that, in this paper, we do not deal with the management of docu-
ment content, but only with the management of document annotations based on subject
areas. We are aware that, apart from subject area, there are several other dimensions of
content description such as the format of the document, its date of creation, its author,
the language in which the document content is written (if there is text involved), and so
on. However, in this paper, we focus only on the subject area dimension, and when we
talk of annotation we actually mean subject area description.

We note that a lot of efforts have been devoted recently to develop languages and
tools to generate, store and query metadata. Some of the most noticeable achieve-
ments are the RDF language [20], RDF schemas [21], query languages for large RDF
databases [14, 2] and tools to produce RDF descriptions from documents [13, 5].

Several metadata standards exist today, such as the Dublin Core [9], or the IEEE
Learning Object Metadata [18]. It seems quite difficult to produce them automatically.
In this paper, we focus on taxonomy-based annotations to describe the content of docu-
ments [4]. Generation of such annotations remains essentially a manual process, possi-
bly aided by acquisition software (see for instance [13, 22, 5], and [10] for a discussion).
The fully automatic generation of metadata is hardly addressed in the literature, with
few exceptions [17, 25, 8]. A representative work is the Semtag system described in [8]
which “tags” web pages with terms from a standard ontology, thanks to text analysis
techniques. This is different – and essentially complementary – to our approach, which
relies on the structure of composite documents to infer new annotations. Finally the
functionalities presented in Section 4 can be seen as an extension of well-known me-
diation techniques [26, 6, 3, 23], wih specific features pertaining to the management of
structured information.

In summary, the novel aspects of our work concern the creation, automatic anno-
tation, management and querying of composite documents distributed over an infor-
mation network. We are not aware of other approaches in the literature that provide a
similar formal framework for handling these functionalities.

In the rest of this paper we first describe the representation of documents (Section 2)
and their annotation (Section 3) and then the functionalities supported by the mediator
(Section 4).

2 The Representation of a Document

As mentioned earlier, in our model, a document is represented by an identifier together
with a set of parts showing how the document is constructed from other, simpler docu-
ments. We do not consider the document content itself, but focus only on its representa-
tion by an identifier and a set of parts, as this is sufficient for our metadata management
and mediation purposes. Therefore, hereafter, when we talk of a document we shall
actually mean its representation by an identifier and a set of parts.

In order to define a document formally, we assume the existence of a countably infi-
nite set D whose elements are used by all authors for identifying the created documents.
For example, the set D could be the set of all URIs. In fact, we assume that the creation
of a document is tantamount to choosing a (new) element from D and associating it
with a set of other documents that we call its parts.

Definition 1 (The Representation of a document) A document consists of an identi-
fier d together with a (possibly empty) set of documents, called the parts of d and de-
noted as parts(d). If parts(d) = ∅ then d is called atomic, else it is called composite.

For notational convenience, we shall often write d = d1 + d2 . . . + dn to stand
for parts(d) = {d1, d2, . . . , dn}. Based on the concept of part, we can now define the
concept of component.

Definition 2 (Components of a document) Let d = d1 + d2 . . . + dn. The set of com-
ponents of d, denoted as comp(d), is defined recursively as follows:
if d is atomic then comp(d) = ∅
else comp(d) = parts(d) ∪ comp(d1) ∪ comp(d2) ∪ . . . ∪ comp(dn).

In this paper, we assume that a document d and its associated set of components
can be represented as a rooted directed acyclic graph (dag) with d as the only root. We
shall refer to this graph as the composition graph of d. Clearly, the choice of parts of
a composite document and their arrangement to form a composition graph should be
left entirely up to its author. The composition graph of an atomic document consists
of just one node, the document identifier itself. We note that the absence of cycles
in the composition graph simply reflects the reasonable assumption that a document
cannot be a component of itself. Clearly, this does not prevent a document from being
a component of two or more distinct documents belonging to the same composition
graph, or to different composition graphs.

It is important to note that in our model the ordering of parts in a composite doc-
ument is ignored because it is not relevant to our purposes. Indeed, as we shall see
shortly, deriving the annotation of a composite document from the annotations of its
parts does not depend on any ordering of the parts.

3 Annotations of documents

As we mentioned in the introduction, document content annotations are built based on
a controlled vocabulary, or taxonomy, to which all authors adhere. A taxonomy consists
of a set of terms together with a subsumption relation between terms. An example of a
taxonomy is the well known ACM Computing Classification System [1].

Definition 3 (Taxonomy) A taxonomy is a pair (T,�) where T is a terminology, i.e., a
finite and non-empty set of names, or terms, and � is a reflexive and transitive relation
over T , called subsumption.

Theory Languages

OOL

C++ Java

Programming

Algorithms

Sort

BubbleSortQuickSortMergeSort

JavaBeansJSP

Fig. 1. A taxonomy

If s � t then we say that s is subsumed by t, or that t subsumes s. A taxonomy
is usually represented as a graph, where the nodes are the terms and there is an arrow
from term s to term t iff s subsumes t. Figure 1 shows an example of a taxonomy, in
which the term Languages subsumes the term OOL, the term Java subsumes the
term JavaBeans, and so on. We note that the subsumption relation is not antisym-
metric, i.e., (s � t) and (t � s) does not necessarily imply s = t. Therefore, we define
two terms s and t to be synonyms iff s � t and t � s. However, in this paper, we
shall not consider synonyms. From a technical point of view, this means that we work
with classes of synonym terms, rather than individual terms. Put it differently, we work
with just one representative from each class of synonyms. For example, referring to
Figure 1, the term OOL is the representative of a class of synonyms in which one can
also find terms such as Object-Oriented Languages, O-O Languages, and
so on, that are synonyms of OOL.

However, even if we work only with classes of synonyms, a taxonomy is not nec-
essarily a tree. Nevertheless, most taxonomies used in practice (including the ACM
Computing Classification System mentioned earlier) are in fact trees. In this paper, we
shall assume that the taxonomy used by all authors to describe the contents of their doc-
uments is in fact a tree. We shall simply refer to this tree-taxonomy as “the taxonomy”.

Now, in order to make a document sharable, an annotation of its content must be
provided, so that users can judge whether the document in question matches their needs.
We define such an annotation to be just a set of terms from the taxonomy. For example,
if the document contains the quick sort algorithm written in java then we can choose
the terms QuickSort and Java to describe its content. In this case the set of terms
{QuickSort, Java} can be used as an annotation of the document.

Definition 4 (Annotation) Given a taxonomy (T,�) we call annotation in T any set
of terms from T .

However, a problem arises with annotations: an annotation can be redundant if
some of the terms it contains are subsumed by other terms. For example, the anno-
tation {QuickSort, Java, Sort} is redundant, as QuickSort is subsumed by
Sort. If we remove either Sort or QuickSort then we obtain a non-redundant an-
notation: either {QuickSort, Java} or {Sort, Java}, respectively. As we shall
see later, redundant annotations are undesirable as they can lead to redundant computa-
tions during query evaluation. We shall therefore limit our attention to non-redundant,
or reduced annotations, defined as follows:

Definition 5 (Reduced Annotation) An annotation A in T is called reduced if for any
terms s and t in A, s 6≺ t and t 6≺ s.

Following the above definition one can reduce an annotation in (at least) two ways:
removing all but the minimal terms, or removing all but the maximal terms. In this
paper we adopt the first approach, i.e., we reduce an annotation by removing all but
its minimal terms. The reason for our choice lies in the fact that by removing all but
minimal terms we obtain a more accurate annotation. This should be clear from our
previous example, where the annotation {QuickSort, Java} is more accurate than
{Sort, Java}.

Definition 6 (Reduction) Given an annotation A in T we call reduction of A, denoted
reduce(A), the set of minimal terms in A with respect to the subsumption �.

An annotation can be seen both as a summary of the document content and as a sup-
port to find and retrieve the document. In the case of an atomic document the annotation
can be provided either by the author or by the system via a semi-automatic analysis of
the document content [12]. In the case of a composite document, though, apart from
the author annotation, we would like to derive to derive also a second annotation, auto-
matically, from the annotations of the document parts. We shall refer to such a derived
annotation as the implied annotation of the composite document. To get a feeling of the
kind of implied annotation that we have in mind, let us see an example.

Example 1 Let d = d1 + d2 be a composite document with the following annotations
of its parts:

A1 = {QuickSort,Java}
A2 = {BubbleSort,C++}

Then the implied annotation of d = d1 + d2 will be {Sort,OOL}, that summarizes
what the two parts have in common.

We shall come back to this example after the formal definition of implied annota-
tion.

Now, the question is: how can one define the implied annotation of a composite
document so as to best reflect the contents of its parts. Roughly speaking, what we
propose in this paper is that the implied annotation should satisfy the following criteria:

– it should be reduced, for the reasons explained earlier;
– it should summarize what the parts have in common;
– it should be minimal.

To illustrate points 2 and 3 above, suppose that a composite document has two
parts with annotations {QuickSort} and {BubbleSort}. The term Sort is a good
candidate for being the implied annotation, as it describes what the two parts have in
common. Moreover, as we can see in Figure 1, Sort is the minimal term with these
properties. On the other hand, the term Algorithms is not a good candidate because,
although it summarizes what the two parts have in common, it is not minimal (as it
subsumes the term Sort).

Coming back to Example 1, following the above intuitions, we would like the im-
plied annotation of d to be {Sort,OOL}. Indeed,

– {Sort,OOL} is a reduced annotation;
– the term Sort summarizes what QuickSort and BubbleSort have in com-

mon, and OOL summarizes what Java and C++ have in common;
– it is minimal, as any other annotation with the above properties will have terms

subsuming either Sort or OOL.

In order to formalize these intuitions, we introduce the following relation on anno-
tations.

Definition 7 (Refinement Relation on Annotations) Let A and A′ be two annotations.
We say that A is finer than A′, denoted A v A′, iff for each t′ ∈ A′, there exists t ∈ A

such that t � t′.

In other words, A is finer than A′ if every term of A′ subsumes some term of A.
For example, the annotation A ={QuickSort, Java,BubbleSort} is finer than
A′ = {Sort,OOL}, whereas A′ is not finer than A. To gain some more insight into
this ordering, let us see another example. Referring to Figure 1, consider the following
reduced annotations:

– A = {JSP,QuickSort,BubbleSort}
– A′ = {Java,Sort}

Then A v A′, as each term t′ of A′ subsumes some term t of A. Indeed, Java
subsumes JSP and Sort subsumes QuickSort (of course, Sort also subsumes
BubbleSort, but the existence of one term in A subsumed by Sort is sufficient).

Note that, according to this ordering, once we have verified that A v A′ we may
add to A as many extra terms as we wish without destroying the ordering.

Clearly, v is a reflexive and transitive relation, thus a pre-ordering over the set of all
descripions. However, v is not antisymmetric, as the following example shows. Con-
sider A1 = {OOL, Java, Sort} and A2 = {Java, Sort, Algorithms}. It
is easy to see that A1 v A2 and A2 v A1, although A1 6= A2. However, as we have
explained earlier, for the purposes of this paper, we restrict our attention to reduced an-
notations only; and, as stated in the following proposition, for reduced annotations, the
relation v becomes also antisymmetric, thus a partial order.

Proposition 1 The relation v is a partial order over the set of all reduced annotations.

Proof. Indeed, assume A v A′ and A′ v A, and consider a term t′ of A′. Then there is
a term t in A such that t � t′. We claim that t′ � t as well, and therefore that t = t′.
Otherwise, as A′ v A and t is in A, there is a term t′′ (different than t′) such that
t′′ � t, and thus t′′ � t′. Assuming t′′ 6= t′, we have a contradiction to the fact that A′

is a reduced annotation. 2

Now, using this ordering, we can define formally the implied annotation of a com-
posite document so as to satisfy the criteria for a “good” implied desription, given ear-
lier. First, we need the following result:

Theorem 2 Let A = {A1, .., An} be any set of reduced annotations. Let U be the set
of all reduced annotations S such that Ai v S, i = 1, 2, ..., n, i.e., U = {S|Ai v S, i =
1, . . . , n}. Then U has a unique minimal element, that we shall denote as lub(A,v).

Proof. Let P = A1 × A2 × . . . × An be the cartesian product of the annotations in A,
and suppose that there are k tuples in this product, say P = {L1, L2, ..., Lk}.

Let A = {lub�(L1), lub�(L2), . . . , lub�(Lk)}, where lub�(Li) denotes the least
upper bound of the terms in Li, with respect to �. As (T,�) is a tree, this least
upper bound exists, for all i = 1, 2, ..., n. Now, let R be the reduction of A, i.e.,
R = reduce(A). We shall show that R is the smallest element of U .

Indeed, it follows from the definition of R that Ai v R, for i = 1, 2, ..., n. More-
over, let S be any annotation in U , and let t be a term in S. It follows from the definition
of U that there is a term vi in each annotation Ai such that vi � t. Consider now the
tuple v =< v1, v2, ..., vn >. By the definition of least upper bound, lub�(v) � t, and
as lub�(v) is in R, it follows that R v S, and this completes the proof. 2

With this theorem at hand, we can now define the annotation implied by a set of
annotations A = {A1, . . . , An}.

Definition 8 (Implied Annotation) Let A = {A1, .., An} be a set of annotations in T .
We call implied annotation of A, denoted IAnnot(A), the least upper bound of A in
v, i.e., IAnnot(A) = lub(A,v)

Theorem 2 suggests the following algorithm for the computation of the implied
annotation. Its proof of correctness follows directly from Theorem 2.

Algorithm IANNOT

Input: A set of annotations A1, A2, . . . , An

Output: The implied annotation
begin

Compute P = A1 × A2 × . . . × An

for each tuple Lk = [tk1 , tk2 , . . . , t
k
n] in P ,

compute Tk = lub�(tk
1
, tk

2
, . . . , tkn)

Let Aux = {T1, . . . , Tl}
return reduce(Aux)

end

In the algorithm IANNOT, the function lub�(tk1 , . . . , tkn) returns the least upper
bound of the set of terms tk

1
, . . . , tk

n
with respect to �. In Section 4 we shall use

this algorithm to compute automatically the implied annotation of a composite docu-
ment, based on the annotations of its parts. More precisely, given a composite document
d = d1, + . . . + dn, the annotations A1, . . . , An in the above algorithm will be those of
the parts d1, . . . , dn, respectively, and the implied annotation will then be the implied
annotation of d.

We end this section by working out a few examples illustrating how this algorithm
works (always referring to the taxonomy of Figure 1).

Example 2 Consider the document d = d1 + d2, composed of two parts with the fol-
lowing annotations:

A1 = {QuickSort,Java}
A2 = {BubbleSort,C++}

In order to compute the implied annotation, first we compute the cross-product P =
A1 × A2. We find the following set of tuples:

P =

L1 =<QuickSort, BubbleSort>
L2 =<QuickSort, C++>
L3 =<Java, BubbleSort>
L4 =<Java, C++>

Next, for each tuple Li, i = 1, . . . , 4, we compute the least upper bound Ti of the
set of terms in Li:

1. T1 = Sort
2. T2 = Programming
3. T3 = Programming
4. T4 = OOL

We then collect together these least upper bounds to form the set Aux:

Aux = {Sort,Programming,OOL}

Finally we reduce Aux to obtain the implied annotation:

Implied Annotation = {Sort,OOL}

In view of our discussions so far, this result can be interpreted as follows: each part of
the document concerns both, sorting and object-oriented languages.

Example 3 Consider now the composite document d′ = d1 + d3, with the following
annotations of its parts:

A1 = {Java,QuickSort}
A3 = {BubbleSort}

Proceeding similarly, as in Example 2, we find successively:

1. The cross-product:

P =

{

L1 =<QuickSort, BubbleSort>
L2 =<Java, BubbleSort>

2. The least upper bounds: Aux = {Sort,Programming}
3. The implied annotation: reduce(Aux) = {Sort}

The following comments are noteworthy:

1. The term Java is not reflected in the implied annotation of Example 3, as it is not
something that both parts share.

2. The fact that Java has disappeared in the implied annotation means no loss of
information: if a user searches for documents related to java, then d1 will be in the
answer and d′ will not, which is consistent.

3. If we had put Java in the implied annotation of d′, this would give rise to the
following problem: when one searches for documents related to java, the system
will return both d1 and d′. Clearly, this answer is redundant (because d1 is part of
d′), and also somehow irrelevant as only a part of d′ concerns java.

Finally we note that the same document will generate different implied annotations,
depending on what its “companion” parts are in a composite document. This is illus-
trated by our last example.

Example 4 Consider the composite document d′′ = d1 + d4, with the following anno-
tations of its parts:

A1 ={Java,QuickSort} A4 ={C++}

Proceeding similarly, as in Example 2, we find successively:

1. The cross-product:

P =

{

L1 =<Java,C++>
L2 =<QuickSort,C++>

2. Aux ={OOL,Programming}
3. reduce(Aux) = {OOL}

Note that, in the two previous examples, d1 is part of a composite document, but
each time with a different “companion part”: first with d3 in d′, then with d4 in d′′. It
is interesting to note that, depending on the companion part, either the “Sort-aspect” of
d1 or the “OOL-aspect” appears in the implied annotation.

4 The Mediator

As we mentioned in the introduction, we consider that a community of authors co-
operate in the creation of documents to be used by other authors. Each author is a
“provider” of documents to the community but also a “consumer”, in the sense that he
creates documents based not only on other documents that he himself has created but
also on documents that other authors have created and are willing to share. Each docu-
ment resides at the local repository of its author, so all authors’ repositories, collectively,
can be thought of as a database of documents spread over the network. Typically, an au-
thor wishing to create a new document will use as components some of the documents
from his local database, and will also search for relevant documents that reside at the
local databases of other authors – provided that those other authors are willing to share
them.

Authors willing to share their documents with other authors in the network must
register them with a coordinator, or mediator, and authors that search for documents
matching their needs must address their queries to the mediator. The mediator is actually
a software module supporting the sharing of documents. It provides a set of services,
among which the following basic services:

– query evaluation
– registration of a document
– un-registration of a document
– annotation modification

In this section, we discuss these basic services and outline their interconnections.
The implementation of all the above services relies on document annotations that

are provided to the mediator during document registration. Indeed, during registration
of a document, its author is required to submit the document identifier, say d, and an
annotation of d that we call the author annotation of d, denoted as AAnnot(d). If d is
atomic then the author annotation must be nonempty, whereas if d is composite the au-
thor annotation can be empty. However, if d is composite the author is also required to
submit all parts of d. Based on the annotations of the parts, the mediator then computes
(automatically) the implied annotation of d. Finally, to register d, the mediator uses
the author annotation augmented by the implied annotation, after removing all redun-
dant terms. The final set of terms used for registration is what we call the registration
annotation of d.

Definition 9 (Registration Annotation) The Registration Annotation of a document
d = d1 + . . . + dn, denoted RAnnot(d), is defined recursively as follows:

– if d is atomic, then RAnnot(d) = reduce(AAnnot(d))
– else RAnnot(d) = reduce(AAnnot(d)∪IAnnot(RAnnot(d1), . . . , RAnnot(dn)))

One may wonder why the author annotation is not sufficient for document registra-
tion, and why we need to augment it by the implied annotation. The answer is that the
author of a composite document d may not describe the parts of d in the same way as
the authors of these parts have done. Let us see an example. Suppose that two docu-
ments, d1 and d2, have been created by two different authors, with the following author
annotations:

Theory Languages

OOL

C++ Java

Programming

Algorithms

Sort

MergeSort BubbleSortQuickSort

JSP JavaBeand5

d6

d1 d2

d3 d4

Fig. 2. A catalogue

AAnnot(d1) = {QuickSort,Java}
AAnnot(d2) = {BubbleSort,C++}

Assume now that, after browsing their content, a third author considers d1 and d2

as examples of good programming style, and decides to use them as parts of a new,
composite document d = d1 +d2. Consequently, the author of d provides the following
author annotation:

AAnnot(d) = {GoodProgrammingStyle}

Although this author annotation might be accurate for the author’s own purposes, the
document d still can serve to teach (or learn) java and sorting algorithms. This informa-
tion will certainly be of interest to users searching for documents containing material
on java and sorting algorithms. Therefore, before registration, the author annotation
should be completed, or augmented by the implied annotation of d, i.e., {OOL,Sort},
to obtain the following registration annotation:

{GoodProgrammingStyle,OOL,Sort}

This annotation expresses all annotations, i.e., the one given by the author of d and
those given by the authors of the parts of d.

During document registration, the registration annotation of d is what is actually
stored by the mediator in a repository. Conceptually, the repository can be thought of as
a set of pairs constructed as follows: during registration of a document d, the mediator
stores a pair (t, d) for each term t appearing in the registration annotation of d. The set
of all such pairs (t, d), for all documents that are (currently) registered is what we call
the Catalogue.

Definition 10 (Catalogue) A catalogue C over (T,�) is a set of pairs (t, d), where t is
a term of T and d is a document identifier.

Figure 2 shows a catalogue over the taxonomy of Figure 1. The dotted lines indi-
cate the pairs (t, o) of the catalogue, relating terms with documents. Roughly speaking,
the catalogue is a “shopping list” in which users look for documents that match their
needs. As such, the catalogue is the main conceptual tool for “integrating” all docu-
ments repositories. In what follows, we discuss in more detail how the mediator uses
the catalogue to support the basic services listed earlier.

Query Language

In our model, a query is either a single term or a boolean combination of terms, as stated
in the following definition.

Definition 11 (Query Language) A query over the catalogue is any string derived by
the following grammar, where t is a term:

q ::= t|q ∧ q′|q ∨ q′|q ∧ ¬q′|(q)

Roughly speaking, the answer to a query is computed as follows. If the query is a
single term, then the answer is the set of all documents related either to t or to a term
subsumed by t. If the query is not a single term then we proceed as follows. First, for
each term appearing in the query, replace the term by the set of all documents computed
as explained above; then replace each boolean combinator appearing in the query by the
corresponding set-theoretic operator; finally, perform the set-theoretic operations to find
the answer. These intuitions are reflected in the following definition of answer, where
the symbol tail(t) stands for the set of all terms in the taxonomy strictly subsumed by
t, i.e., tail(t) = {s\s � t}.

Definition 12 (Query Answer) The answer to a query q over a catalogue C, denoted
by ans(q), is a set of documents defined as follows, depending on the form of q (refer
to Definition 11):

Case 1: q is a single term t from T , i.e., q = t

ans(t) = if tail(t) = ∅
then {d\(t, d) ∈ C}
else

⋃

{ans(s)|s ∈ tail(t)}
Case 2: q is a general query

ans(q) =
if q = t then ans(t)
else
begin

if q = q1 ∧ q2, ans(q) = ans(q1) ∩ ans(q2)
if q = q1 ∨ q2, ans(q) = ans(q1) ∪ ans(q2)
if q = q1 ∧ ¬q2, ans(q) = ans(q1)\ans(q2)

end

Example 5 Consider the query q = C++ ∨ Sort. Referring to Figure 2 and apply-
ing the above definition, we find ans(q) = {d5, d6} ∪ {d3, d4, d6} = {d3, d4, d5, d6}.
Similarly, for the query q = C++ ∧¬ BubbleSort we find ans(q) = {d5}.

Registration

An author wishes to make a document available to other users in the network.

To make a document available to other users in the network, its author must submit
the following three items to the mediator:

1. the document identifier, say d;
2. the author annotation of d, which must be nonempty if d is atomic;
3. the identifiers of the parts of d, if d is composite.

The mediator then computes the registration annotation of d on which the actual
registration will be performed. To do this, the mediator uses the following algorithm,
whose correctness is an immediate consequence of Definition 9. The algorithm takes as
input the above items, and updates the catalogue (i.e., the old catalogue is augmented
by a set of pairs (t, d), one for each term t in the registration annotation of d).

Algorithm REGISTRATION

Input: A document d, the author annotation AAnnot(d),
the parts {d1, d2, . . . , dn} of d

begin
A = ∅
for each di ∈ parts(d) do

if di is registered then
Ri = {t|(t, di) ∈ C}

else
Input the author annotation AAnnot(di)
Ri = Registration (di, AAnnot(di), parts(di))

endif
A = A ∪ {Ri}

end for
Let R = reduce(IAnnot(A) ∪ AAnnot(d))
for each t in R, insert the pair (t, d) in the catalogue

end

Note that, if d is atomic then its registration annotation reduces to the reduction of its
author annotation (because parts(d) = ∅, and thus IAnnot(∅) = ∅). From a practical
point of view, the following scenarios can be envisaged for providing the inputs to the
algorithm REGISTRATION; they depend on the nature of the parts of d, as well as on
whether these parts have been registered beforehand or not:

– if a part di of d has already been registered then its registration annotation is taken
from the catalogue, independently of whether di is atomic or composite.

– else if di is composite and not yet registered, then its registration annotation is
recursively computed from the registration annotations of the parts of di;

– else if di is atomic then its author annotation is required as input, and its registration
annotation is the reduction of its author annotation.

We assume that a document d, whether atomic or composite, can be registered only
if its registration annotation is nonempty. This assumption is justified by the fact that
search for documents of interest is based on annotations. As a consequence, if we allow
registration of a document with an empty annotation, then such a document would be
inaccessible. Therefore, the mediator needs at least one term t, in order to insert the
pair (t, o) in the catalogue, and make d accessible. This is ensured by the following
constraint.

Constraint 1 (Registration) A document can be registered only if its registration an-
notation is nonempty

For atomic documents this is tantamount to requiring that the author decription be
nonempty.

Constraint 2 (Atomic documents registration) An atomic document can be registered
only if its author annotation is nonempty

If the document is composite, then Constraint 1 implies that either the author an-
notation must be nonempty or the implied annotation must be nonempty. A sufficient
condition for the implied annotation to be nonempty (and thus for Constraint 1 to be
satisfied) is that all parts of the document be registered, or (reasoning recursively) that
all atomic components of the document be registered. Indeed, if all atomic components
have already been registered, then the mediator will be able to compute a nonempty
implied annotation, and thus a nonempty registration annotation, independently on
whether the author annotations of one or more components are missing. Therefore the
following sufficient condition for the registration of a composite document:

Constraint 3 (Composite Document Registration)
If every atomic component of a composite document is registered then the document can
be registered

Figure 3 shows an example of composite document registration. As shown in the
figure, two atomic documents, d3 and d4 have already been registered in the catalogue
C, and so has the composite document d2, whose parts are d3 and d4. The author anno-
tations of all three documents are shown in the figure. Although the author annotation
of d2 is empty, its registration was possible as both its parts have nonempty author an-
notations. Note that the registration annotations of d3 and d4 coincide with their author
annotations (since both documents are atomic and their author annotations happen to
be reduced). The registration annotation of d2 is easily seen to be {OOL}.

Now, suppose that an author wishes to reuse d2 (and its parts) in order to create a
new document d, composed of two parts: d1 and d2, where d1 is an atomic document
from the author’s local database. Suppose now that in order to register d, the author

C

d3

d1 d2

d4

d

{C++}

{JSP}

{Theory}

∅

{Javabeans, Quicksort}

Fig. 3. Registration annotation of a composite document

provides to the mediator author annotations for d and d1, as shown in the figure. Based
on the author annotations of d and d1, and the registration annotation of d2 (computed
above), the mediator will then compute the registration annotation of d – which is easily
seen to be {OOL,Theory}. Finally, the mediator will enter in the catalogue the two
pairs (OOL, d) and (Theory, d).

Unregistration:

An author wishes to remove from the catalogue one of his registered documents

To unregister a document, its author must submit to the mediator the document identi-
fier, say d. The mediator then performs the following tasks:

– notify all users using d as a component in their composite documents;
– remove from the catalogue each pair (t, d);
– re-compute the registration annotations of all composite documents affected by the

removal of d;
– use the re-computed registration annotations to maintain the catalogue.

We note that notification can be done either by broadcasting the removal of d to all
users, or by first finding the users concerned and then notifying only those concerned.
The first solution is probably cheaper but may create inconvenience to those users not
concerned, whereas the second avoids inconvenience but requires searching the cata-
logue for finding the users concerned (assuming that the mediator keeps track of the
“foreign documents” used by each user). In any case, once notified of the (pending)
unregistration of d, the users concerned have the option of first creating (in their local
database) a copy of d and then proceeding to re-register all composite documents in
which d appears as a component. Otherwise, the registration annotation of such docu-
ments might become empty.

Annotation modification:

An author wishes to modify the annotation of one of his registered documents

To modify the annotation of a document, its author must submit to the mediator the
document identifier, say d, and the new author annotation, say A. The mediator then
performs the following tasks:

– notify all users using d as a component in some of their composite documents;
– remove from the catalogue each pair (t, d);
– using the new author annotation A, compute the new registration annotation RIannot(d)

from the catalogue;
– re-compute the registration annotations of all composite documents affected by the

modification;
– use the re-computed registration annotations to maintain the catalogue.

As in the case of un-registration, notification can be done either by broadcasting the
modification in the annotation of d to all users or by first finding the users concerned and
then notifying only those concerned. However, now, there is no need for any action on
the part of the user: all modified annotations can be obtained by querying the catalogue.

5 Concluding Remarks

We have presented a model for composing documents from other simpler documents
and we have seen an algorithm for computing implied annotations of composite docu-
ments based on the annotations of their parts.

In our model, a document is represented by an identifier together with a composition
graph which shows how the document is composed from other, simpler documents. The
annotation of each document is a set of terms from the taxonomy. We have distinguished
three kinds of annotation:

1. the author annotation, i.e., the annotation provided to the mediator explicitly by the
author;

2. the implied annotation, i.e., the annotation implied by the annotations of the parts
(and computed by the mediator automatically during registration);

3. the registration annotation, i.e., the annotation computed from the previous two
annotations and used by the mediator to register the document.

We have also outlined the main functionalities of the mediator, a software module
that acts as a central server, registering or unregistering sharable documents, notifying
users of changes, maintaining the catalogue and answering queries by authors.

Work in progress aims at:

1. validating our model in the context of a prototype, in which the documents are
XML documents;

2. embedding our model in the RDF Suite [2];

3. integrating our annotation generating algorithms into a change propagation module
to be integrated in the mediator.

The basic assumption underlying our work is the existence of a network-wide tax-
onomy according to which documents are described and queries are formulated. As
a result, the local repositories can be seen as peers served by a central catalogue (a
“super-peer”).

Future work aims at relaxing this assumption, in order to arrive at a pure peer-to-
peer network. This will be done in two steps, as follows.

First, we will assume each author, or group of authors to have their own (possibly
non-standard) taxonomy, for describing their documents locally and for formulating
their queries to the mediator. This will require the establishment of articulations, i.e.,
semantic mappings between each local taxonomy and the central taxonomy. Work in
that direction will be based on previous work on mediation [23, 24].

Second, we will assume that the role of the mediator can be played by any local
taxonomy. Indeed, in principle, any local taxonomy can play the role of a mediator for
all other local taxonomies that are articulated to it.

Another line of future research concerns a personalized interaction with the net-
work. Indeed, from a conceptual point of view, all one has to do is to let the network
user express his needs in terms of a set of named queries, or views of the form:

<term-name> = <query-to-the mediator>

The set of terms thus declared (plus, eventually, a user-defined subsumption rela-
tion) will then constitute the user-defined taxonomy, that will serve as the personalized
interface to the network. Queries to this personalized taxonomy can be answered by
simple substitution, based on the user declarations defining the terms of the personal-
ized taxonomy. Work on the personalization aspects is ongoing and will be reported
later.

References

1. The ACM Computing Classification System. ACM, 1999. http://www.acm.org/class/.
2. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The ICS-

FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc. Intl. Conf. on
Semantic Web, 2001.

3. J. Ambite, N. Ashish, G. Barish, C. Knoblock, S. Minton, P. Modi, I. Muslea, A. Philpot, and
S. Tejada. ARIADNE: a System for Constructing Mediators for Internet Sources. In Proc.
ACM SIGMOD Symp. on the Management of Data, pages 561–563, 1998.

4. R. Baeza-Yates and B. Ribeiro-Neto, editors. Modern Information Retrieval. Addison-
Wesley, 1999.

5. F. Ciravegna, A. Dingli, D. Petrelli, and Y. Wilks. User-System Cooperation in Document
Annotation based on Information Extraction. In V. R. B. A. Gomez-Perez, editor, Proc. of
the Intl. Conf. on Knowledge Engineering and Knowledge Management (EKAW02), Lecture
Notes in Artificial Intelligence 2473, Springer Verlag, 2002.

6. S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your Mediators need Data Conversion. In
Proc. ACM SIGMOD Symp. on the Management of Data, 1998.

7. S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann, and
I. Horrocks. The Semantic Web: The Roles of XML and RDF. IEEE Expert, 15(3), 2000.

8. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Rajagopalan,
and A. Tomkins. SemTag and seeker: bootstrapping the semantic web via automated seman-
tic annotation. In Proc. Intl. World Wide Web Conference (WWW), pages 178–186, 2003.

9. Dublin Core Metadata Element Set. Technical Report, 1999. http://dublincore.org/.
10. M. Erdmann, A. Maedche, H. Schnurr, and S. Staab. From Manual to Semi-automatic Se-

mantic Annotation: About Ontology-based Semantic Annotation Tools. In Proc. COLING
Intl. Workshop on Semantic Annotation and Intelligent Context, 2000.

11. H. Garcia-Molia. Peer-to-peer Data Management. In Proc. IEEE Intl. Conf. on Data Engi-
neering (ICDE), 2002.

12. S. Handschuh, S. Staab, and R. Volz. On deep annotation. In Proc. Intl. World Wide Web
Conference (WWW), pages 431–438, 2003.

13. J. Kahan and M. Koivunen. Annotea: an Open RDF Infrastructure for Shared Web Annota-
tions. In Proc. Intl. World Wide Web Conference (WWW), pages 623–632, 2001.

14. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
Declarative Query Language for RDF. In Proc. Intl. World Wide Web Conference (WWW),
pages 623–632, 2002.

15. K. Keenoy, G. Papamarkos, A. Poulovassilis, D. Peterson, and G. Loizou. Self e-Learning
Networks – Functionality, User Requirements and Exploitation Scenarios. Technical report,
SeLeNe Consortium, 2003. www.dcs.bbk.ac.uk/selene/.

16. B. Kieslinger, B. Simon, G. Vrabic, G. Neumann, J. Quemada, N. Henze, S. Gunnersdottir,
S. Brantner, T. Kuechler, W. Siberski, and W. Nejdl. ELENA Creating a Smart Space for
Learning. In Proc. Intl. Semantic Web Conference, volume 2342 of LNCS. Springer Verlag,
2002.

17. E. D. Liddy, E. Allen, S. Harwell, S. Corieri, O. Yilmazel, N. E. Ozgencil, A. Diekema,
N. McCracken, J. Silverstein, and S. Sutton. Automatic Metadata Generation and Evaluation.
In Proc. ACM Symp. on Information Retrieval, Tempere, Finland, 2002. Poster session.

18. Draft Standard for Learning Objects Metadata. IEEE, 2002.
19. W. Nejdl, B. Worlf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and

T. Risch. EDUTELLA: a P2P networking Infrastruture Based on RDF. In Proc. Intl. World
Wide Web Conference (WWW), page 604:615, 2002.

20. Resource Description Framework Model and Syntax Specification. World Wide Web Con-
sortium, 1999.

21. Resource Description Framework Schema (RDF/S). World Wide Web Consortium, 2000.
22. S. Staab, A. Maedche, and S. Handschuh. An Annotation Framework for the Semantic Web.

In Proc. Intl. Workshop on Multimedia annotation, 2001.
23. Y. Tzitzikas, N. Spyratos, and P. Constantopoulos. Mediators over Ontology-based Infor-

mation Sources. In Proc. Intl. Conf. on Web Information Systems Engineering (WISE’01),
2001.

24. Y. Tzitzikas, N. Spyratos, and P. Constantopoulos. Query Evaluation for Mediators over
Web Catalogs. In Proc. Intl. Conf. on Information and Communication Technologies and
Programming, Primorsko, Bulgaria, 2002.

25. J. Wang and F. Lochovsky. Data extraction and label assignment for web databases. In Proc.
Intl. World Wide Web Conference (WWW), pages 187–196, 2003.

26. G. Wiederhold. Mediators in the Architecture or Future Information Systems. IEEE Com-
puter, 25, 1992.

