
Duality and existence for a class of mass
transportation problems and economic

applications

G. Carlier ∗

14th May 2002

Abstract

We establish duality, existence and uniqueness results for a class of
mass transportations problems. We extend a technique of W. Gangbo
[9] using the Euler Equation of the dual problem. This is done by
introducing the h-Fenchel Transform and using its basic properties.
The cost functions we consider satisfy a generalization of the so-called
Spence-Mirrlees condition which is well-known by economists in di-
mension 1. We therefore end this article by a somehow unexpected
application to the economic theory of incentives.

Résumé

Nous établissons dans cet article des résultats de dualité, d’exis-
tence et d’unicité pour une classe de problèmes de transport optimal
de masse. La nouveauté réside ici dans l’emploi de la transformée de
Fenchel h-convexe qui permet d’utiliser un argument de W. Gangbo [9]
consistant à exploiter l’équation d’Euler du problème dual. Les coûts
de transport que nous considérons satisfont une condition généralisant
la condition de Spence-Mirrlees bien connue des économistes en dimen-
sion 1. Nous terminons ainsi cet article par une application de notre
résultat à la théorie économique des incitations.
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1 Introduction and main statement

1.1 Assumptions and notations

Let us first recall that, given a probability space (Ω1,A1, µ1), a measurable
space (Ω2,A2) and a measurable map f : Ω1 → Ω2, the push-forward of µ1

through f , denoted f]µ1 is the probability measure on (Ω2,A2) defined by:

f]µ1(B) := µ1(f
−1(B))

for every B ∈ A2.

In all the following, Ω is some bounded connected open subset of Rn, and µ
is some probability measure in Ω which is absolutely continuous with respect
to the n-dimensional Lebesgue measure, with a positive Radon-Nikodym
derivative with respect to the n-dimensional Lebesgue measure and such
that µ(∂Ω) = 0.

We are also given a compact Polish space Y , a Radon probability measure
ν on Y and a function h : Ω× Y → R which satisfies:

h ∈ C0(Ω× Y,R), (1)

for every ω ⊂⊂ Ω there exists c(ω) > 0 such that for all (x1, x2) ∈ ω2

sup
y∈Y

|h(x1, y)− h(x2, y)| ≤ c(ω)‖x1 − x2‖, (2)

for all y ∈ Y , h(., y) is differentiable in Ω and for all (y1, y2, x) ∈ Y 2 × Ω

∂h

∂x
(x, y1) =

∂h

∂x
(x, y2) ⇒ y1 = y2. (3)

Assumption (3) plays an important role in the proofs and we shall see
that it may be interpreted as a generalization of the well-known one of Spence
and Mirrlees, this assumption was first introduced by Levin in [13].

Our aim is to study the following Monge’s mass transportation problem:

(M) sup
s∈∆(µ,ν)

J(s) :=

∫
Ω

h(x, s(x))dµ(x)

with:
∆(µ, ν) := {s is a Borel map : Ω → Y s.t. s]µ = ν}.

The associated Monge-Kantorovich problem is the linear (relaxation of
(M)) program:
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(MK) sup
γ∈Γ(µ,ν)

K(γ) :=

∫
Ω×Y

h(x, y)dγ(x, y)

with:

Γ(µ, ν) := {γ is a Borel probabiliy measure on Ω×Y s.t. π1]γ = µ, π2]γ = ν}

where π1(x, y) = x, π2(x, y) = y for all (x, y) ∈ Ω× Y .

Finally, we define the (dual of (M)) problem:

(D) inf
(ψ,φ)∈Eh

L(ψ, φ) :=

∫
Ω

ψdµ+

∫
Y

φdν

with:

Eh := {(ψ, φ), real-valued measurable s.t. ψ(x)+φ(y) ≥ h(x, y), ∀(x, y) ∈ Ω×Y }.

1.2 Main result

If ψ is a given real-valued function defined on Ω, we define the h-Fenchel
Transform of ψ, ψh by:

ψh(y) := sup
x∈Ω

h(x, y)− ψ(x), for all y ∈ Y.

In a similar way, if φ is a given real-valued function defined on Y , we define
the ȟ-Fenchel Transform of φ, φȟ by:

φȟ(x) := sup
y∈Y

h(x, y)− φ(y), for all x ∈ Ω.

Our main result can then be stated as follows:

Theorem 1 Under assumptions (1), (2), (3) the following assertions hold:

1) problems (M), (MK) and (D) admit at least one solution,

2) (D) is dual to (M) and (MK) in the sense:

inf(D) = sup(M) = sup(MK),

3) the minimum in (D) is attained by a pair (ψ, φ) such that:

ψ = φ
ȟ
, φ = ψ

h
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there exists moreover some Borel map s from Ω to Y which satisfies:

ψ(x) + φ(s(x)) = h(x, s(x)), for all x ∈ Ω,

s ∈ ∆(µ, ν) and is a solution of (M), and (id, s)]µ is a solution of (MK),

4) uniqueness also holds: if s is a solution of (M) then s = s µ-a.e.,
(id, s)]µ is the unique solution of (MK), and if (ψ, φ) is a solution of (D)
then ψ−ψ (respectively φ−φ) is equal to some constant µ-a.e. (respectively
ν-a.e.).

In Section 2, technical lemmas are established and basic properties of
the h-Fenchel transform are proved. In Section 3, the main result is proved.
Finally, in Section 4, we adress a question arising in the economic theory
of incentives and show how assumption (3) can be interpreted as a natural
generalization of the Spence-Mirrlees condition. In this framework, our main
result enables to prove a general re-allocation principle.

The problem of optimal measure preserving maps (M) has received a lot
of attention since related questions naturally arise in fluid mechanics [2], dif-
ferential geometry (see [16] for relation with a classical result of Aleksandrov
[1]), shape optimization [4] , functional analysis [11], [12], probability [19]
and economics. In the case Y ⊂ Rn and h(x, y) = x · y, the problem was
solved by Brenier [3] who proved the important Polar Factorization Theo-
rem and existence and uniqueness of an optimal map which is the gradient
of some convex potential. This result was then extended by Mc Cann and
Gangbo [10] for costs of the form c(x− y) with c strictly convex. The result
stated in Theorem 1, is very much in that spirit since it expresses existence
and uniqueness of an optimal allocation map which is a measurable selection
of the h-subdifferential of some h-convex potential. Similar characterization
results were obtained by V. Levin [13] using a different approach based on
cyclical monotonicity and the relaxed problem (MK).

2 Technical preliminaries and h-Fenchel Trans-

form

In what follows ψ will always denote some function : Ω → R∪ {+∞} and φ
some function : Y → R ∪ {+∞}.

Definition 1 1) ψ is h-convex if and only if there exists a nonempty subset
A of Y × R such that:

ψ(x) = sup
(y,t)∈A

h(x, y) + t, for all x ∈ Ω.
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2) φ is ȟ-convex if and only if there exists a nonempty subset B of Ω × R
such that:

φ(y) = sup
(x,t)∈B

h(x, y) + t, for all y ∈ Y.

Remark. If ψ is h-convex then either ψ is identically +∞ or it is bounded.
Note also that finite ȟ-convex potentials are l.s.c, hence ν-measurable.

Definition 2 1) The h-Fenchel Transform of ψ, ψh, is the ȟ-convex function
defined by:

ψh(y) := sup
x∈Ω

h(x, y)− ψ(x), for all y ∈ Y.

2) The ȟ-Fenchel Transform of φ, φȟ is the h-convex function defined by:

φȟ(x) := sup
y∈Y

h(x, y)− φ(y), for all x ∈ Ω.

Obviously, Young’s inequalities hold:

ψ(x) + ψh(y) ≥ h(x, y), for all (x, y) ∈ Ω× Y (4)

and:
φȟ(x) + φ(y) ≥ h(x, y), for all (x, y) ∈ Ω× Y. (5)

Proposition 1

(ψh)ȟ(x) = sup{f(x) : f ≤ ψ, f is h-convex }, for all x ∈ Ω,

(φȟ)h(y) = sup{g(x) : g ≤ φ, f is ȟ-convex }, for all y ∈ Y.
It follows that ψ (respectively φ) is h-convex (respectively ȟ-convex) if and
only if ψ = (ψh)ȟ (respectively φ = (φȟ)h).

Proof.

First (ψh)ȟ is h-convex and Young’s inequality yields (ψh)ȟ ≤ ψ so that,
if we define:

V (x) := sup{f(x) : f ≤ ψ, f is h-convex }, for all x ∈ Ω, (6)

then :
(ψh)ȟ ≤ V ≤ ψ. (7)

Since V is h-convex, there exists a nonempty subset A of Y ×R such that:

V (x) = sup
(y,t)∈A

h(x, y) + t, for all x ∈ Ω.
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Let (y0, t0) ∈ A and ξ := h(., y0) + t0 we have:

ψ ≥ ξ ⇒ (ψh)ȟ ≥ (ξh)ȟ (8)

of course ξ ≥ (ξh)ȟ and since ξh(y0) = −t0 then (ξh)ȟ(x) ≥ h(x, y0)+t0 = ξ(x)
for all x so (ξh)ȟ = ξ, with (8) we get (ψh)ȟ ≥ ξ and since (y0, t0) is arbitrary
in A taking the supremum yields (ψh)ȟ ≥ V so that V = (ψh)ȟ using (7).
The characterization of (φȟ)h is proved in the same way.

Definition 3 1) Define, for all x ∈ Ω:

∂hψ(x) := {y ∈ Y : ψ(x′)− ψ(x) ≥ h(x′, y)− h(x, y), for all x′ ∈ Ω}

∂hψ(x) is called the h-subdifferential of ψ at x, and ψ is h-subdifferentiable
at x if and only if ∂hψ(x) 6= ∅.

2) Define, for all y ∈ Y :

∂ȟφ(y) := {x ∈ Ω : φ(y′)− φ(y) ≥ h(x, y′)− h(x, y), for all y′ ∈ Y }.

Note that ∂hψ(x) and ∂ȟφ(y) can also be defined by:

∂hψ(x) = {y ∈ Y : ψ(x) + ψh(y) = h(x, y)}

and:
∂ȟφ(y) = {x ∈ Ω : φȟ(x) + φ(y) = h(x, y)}.

In particular, if ψ is h-convex and x ∈ Ω, then y ∈ ∂hψ(x) if only if
x ∈ ∂ȟψh(y).

Proposition 2 Let ψ be h-convex and finite, the following assertions hold
true:

1) For all x ∈ Ω, ∂hψ(x) is nonempty and compact, and the restriction
of the set-valued map ∂hψ to every closed subset of Ω has a closed graph,

2) ψ ∈ W 1,∞
loc (Ω), and : esssupω|∇ψ| ≤ c(ω) for all ω ⊂⊂ Ω and c(ω) is

given by (2),

3) if ψ is differentiable at x ∈ Ω and y ∈ ∂hψ(x) then

∇ψ(x) =
∂h

∂x
(x, y),

4) there exists some Borel map sψ such that for almost every x ∈ Ω,
∂hψ(x) = {sψ(x)} and sψ(x) ∈ ∂hψ(x) for all x ∈ Ω.
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Proof.

Let A be some nonempty subset of Y × R such that:

ψ(x) = sup
(y,t)∈A

h(x, y) + t, for all x ∈ Ω.

1) Fix x ∈ Ω and let (yn, tn) be some sequence of A such that h(x, yn)+ tn →
ψ(x) as n → +∞. Up to a subsequence we may assume that yn converges
to some y ∈ Y so that tn → t := ψ(x) − h(x, y). Let us show now that
y ∈ ∂hψ(x). Let x′ ∈ Ω for all n, ψ(x′) ≥ h(x′, yn) + tn passing to the limit
we get ψ(x′) ≥ ψ(x) + h(x′, y) − h(x, y) i.e. y ∈ ∂hψ(x); ∂hψ(x) is clearly
compact since Y is and h is continuous. The fact that the restriction of ∂hψ
to every closed subset of Ω has a closed graph is straightforward.

2) Let ω ⊂⊂ Ω and

c(ω) := sup
(x1,x2,y)∈ω2×Y, x1 6=x2

|h(x1, y)− h(x2, y)| · ‖x1 − x2‖−1 < +∞.

Let (x1, x2) ∈ ω2 we have:

ψ(x1) = sup
(y,t)∈A

h(x1, y) + t = sup
(y,t)∈A

h(x2, y) + t+ h(x1, y)− h(x2, y)

≤ ψ(x2) + c(ω)‖x1 − x2‖
finally, reversing order of x1 and x2 yields the desired result.

3) Let x ∈ Ω be a point of differentiabilty of ψ and y ∈ ∂hψ(x), let
k ∈ Rn, and t 6= 0 be such that [x− tk, x+ tk] ⊂ Ω:

ψ(x+ tk)− ψ(x) = t∇ψ(x) · k + o(t) ≥ h(x+ tk, y)− h(x, y)

= t
∂h

∂x
(x, y) · k + o(t)

dividing by t > 0 and letting t→ 0+ in the previous yields

∇ψ(x) · k ≥ ∂h

∂x
(x, y) · k

similarly the converse inequality also holds taking t → 0− and since k is
arbitrary we get:

∇ψ(x) =
∂h

∂x
(x, y).

4) By 2) and Rademacher’s Theorem ψ is differentiable a.e. in Ω. On
the other, hand since Y is compact and separable and using 1), ∂hψ admits
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a measurable selection say sψ (see [6] or the measurable selection Theorem
of Brown and Purves in [25]). If ψ is differentiable at x ∈ Ω and y ∈ ∂hψ(x)
then by 3) we get:

∂h

∂x
(x, y) =

∂h

∂x
(x, sψ(x))

so that with (3) ∂hψ(x) = {sψ(x)}.

Corollary 1 Let ψ1 and ψ2 be h-convex and finite, if for µ−a.e. x ∈ Ω

∂hψ1(x) ∩ ∂hψ2(x) 6= ∅

then ψ1 − ψ2 is constant.

Proof.

Using Proposition 2, we get ∇(ψ1 − ψ2) = 0 a.e. in Ω hence the desired
result, since Ω is connected.

We end this section by a result which will play a crucial role in the
proof of the main result. The next Proposition is actually a straightforward
generalization of a result of Gangbo [9] which was an important tool in [9]
to prove Brenier’s Theorem.

Proposition 3 Let φ be ȟ-convex and finite, let f ∈ C0(Y,R), define:

ψ0 := φȟ

and for all r ∈ (−1, 1)

ψr := (φ+ rf)ȟ

then also define A := {x ∈ Ω : ψ0 is differentiable at x} and s := sψ0 as in
Proposition 2, 4) then, for all x ∈ A:

lim
r→0

1

r
[ψr(x)− ψ0(x)] = −f(s(x)). (9)

Since µ(Ω \ A) = 0, (9) is satisfied a.e. in Ω.
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Proof.

Let x ∈ A, first we have:

ψ0(x) = h(x, s(x))− φ(s(x)) (10)

And, for all r ∈ (−1, 1):

ψr(x) = h(x, yr)− φ(yr)− rf(yr) for all yr ∈ ∂hψr(x). (11)

Let rn be some sequence of (−1, 1) \ {0} which converges to 0 and relabel
some sequence yrn ∈ ∂hψrn(x) into yn.

Step 1.

Let us show first that yn → s(x) as n→ +∞.

Up to a subsequence we may assume that yn converges to y ∈ Y . First
note that:

‖ψrn − ψ0‖∞ ≤ rn‖f‖∞ → 0 (12)

and:
ψrn(x) = h(x, yn)− φ(yn)− rnf(yn). (13)

Since φ is l.s.c., we get:
limnφ(yn) ≥ φ(y)

so that passing to the limit in (13) ψ0(x) ≤ h(x, y)− φ(y) = h(x, y)− ψh0 (y)
and then y ∈ ∂hψ0(x) = {s(x)}, s(x) is therefore the only cluster point of yn
so that the whole sequence converges to s(x).

Step 2.

First, we have:

1

rn
[ψrn(x)− ψ0(x)] =

1

rn
[(h(x, yn)− φ(yn))− (h(x, s(x))− φ(s(x))]− f(yn).

(14)
On the one hand:

h(x, yn)− φ(yn) ≤ h(x, s(x))− φ(s(x)) (15)

on the other hand:

h(x, yn)− φ(yn) ≥ h(x, s(x))− φ(s(x)) + rn[f(yn)− f(s(x))] (16)

using (15), (16) and the fact that yn converges to s(x) and passing to the
limit in (14) we obtain:

lim
n

1

rn
[ψrn(x)− ψ0(x)] = −f(s(x)) (17)
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since (17) holds for any sequence (rn) ∈ ((−1, 1) \ {0})N that converges to 0
we finally get:

lim
r→0

1

r
[ψr(x)− ψ0(x)] = −f(s(x)). (18)

3 Proof of the main statement

We are now ready to prove Theorem 1. First note that one obviously has:

sup(MK) ≥ sup(M). (19)

Let (ψ, φ) ∈ Eh and γ ∈ Γ(µ, ν), one has:

L(ψ, φ) =

∫
Ω×Y

(ψ(x) + φ(y))dγ(x, y)

≥
∫

Ω×Y
h(x, y)dγ(x, y) = K(γ)

so that:
inf(D) ≥ sup(MK) (20)

Remark. If (ψ, φ) ∈ Eh and s ∈ ∆(µ, ν) (respectively γ ∈ Γ(µ, ν)) are such
that J(s) = L(ψ, φ) (respectively K(γ) = L(ψ, φ)) then (ψ, φ) is a solution
of (D) and s is a solution of (M) (respectively γ is a solution of (MK)).

The first step of the proof is:

Lemma 1 There exists a solution (ψ, φ) of (D), moreover if (ψ, φ) is a so-
lution of (D) then ψ is h-convex, φ is ȟ-convex and those functions are con-
jugate to each other: φ = ψh ν-a.e. and ψ = φȟ µ-a.e..

Proof.

Note first that it is clear from (20) that the value of (D) is finite.

Step 3.

We first prove that if (ψ, φ) ∈ Eh is a solution of (D) then:

µ({ψ > (ψh)ȟ}) = µ({ψ > φȟ}) = ν({φ > (φȟ)h}) = 0 (21)
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If (ψ, φ) ∈ Eh then obviously ψ ≥ φȟ and φ ≥ ψh. Let ψ̃ := φȟ and

φ̃ := ψ̃h = (φȟ)h, by Young’s inequality (ψ̃, φ̃) ∈ Eh and ψ̃ ≤ ψ and φ̃ ≤ φ so

that L(ψ, φ) ≥ L(ψ̃, φ̃). Hence if (ψ, φ) ∈ Eh is a solution of (D) then:

ν({φ > (φȟ)h}) = 0

and
µ({ψ > φȟ}) = 0

this also implies µ({ψ > (ψh)ȟ}) = 0 since (ψh)ȟ ≥ φȟ and (21) is proved.

Step 4.

We now prove existence. Let (ψn, φn) ∈ EN
h be some minimizing sequence

of (D), noting that L(ψn + a, φn − a) = L(ψn, φn) and using (21), we may
assume with no loss of generality that ψn = φȟn, φn = ψhn and:

inf
Y
φn = 0 (22)

also note that the infimum in (22) is attained since φn is l.s.c. say at some
point zn. Since φn ≥ 0 we get first:

ψn ≤ max
Ω×Y

h

and since φn(zn) = 0:
ψn ≥ h(., zn) ≥ min

Ω×Y
h

so that ψn(x) is bounded uniformly in n and x ∈ Ω. On the other hand, using
the fact that ψn is h-convex and Proposition 2, assertion 2), we get that ψn
is locally Lipschitz uniformly in n. Using Ascoli’s Theorem, we may assume,
up to a subsequence that ψn converges uniformly on compact subsets of Ω
to some bounded and locally Lipschitz function ψ.

Step 5.

Let us prove that ψ is itself h-convex. Define, for all x ∈ Ω:

ψ̃(x) := sup
x′∈Ω, y′∈F (x′)

ψ(x′) + h(x, y′)− h(x′, y′)

with:

F (x′) :=
⋂
N≥1

⋃
n≥N

∂hψn(x′)

note that F (x′) 6= ∅ for ∂hψn(x
′) is nonempty and compact for all n.
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ψ̃ is clearly h-convex and ψ̃ ≥ ψ let us show the converse inequality: let
x′ ∈ Ω and y′ = limN ynN

where nN → +∞ and ynN
∈ ∂hψnN

(x′), passing to
the limit in:

ψnN
(x) ≥ ψnN

(x′) + h(x, ynN
)− h(x′, ynN

)

we get:
ψ(x) ≥ ψ(x′) + h(x, y′)− h(x′, y′)

taking the supremum in the previous finally proves ψ = ψ̃ so that ψ is h-
convex.

Step 6.

Let φ := ψ
h

(so that (ψ, φ) ∈ Eh) and let us prove that (ψ, φ) is a solution
of (D). Lebesgue’s dominated convergence Theorem yields first:∫

Ω

ψndµ→
∫

Ω

ψdµ. (23)

Now since, for all (x, y) ∈ Ω× Y , φn(y) ≥ h(x, y)− ψn(x) we get:

limnφn ≥ ψ
h

= φ (24)

using (24) and Fatou’s Lemma we get:

limn

∫
Y

φndν ≥
∫
Y

φdν. (25)

By (23) and (25) we deduce that (ψ, φ) is a solution of (D) with ψ = φ
ȟ

since

φ = ψ
h

and ψ is h-convex.

The precise duality relations between (D) and (M), (MK) are given by:

Lemma 2 Let (ψ, φ) be as in the previous Lemma and s be any Borel selec-
tion of ∂hψ , the following assertions hold:

1) s ∈ ∆(µ, ν) and it is a solution of (M),

2) γ := (id, s)]µ ∈ Γ(µ, ν) and it is a solution of (MK)

3) (D) is dual to (M) and (MK) in the sense:

v := inf(D) = sup(M) = sup(MK).
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Proof. Since (φȟ, φ) ∈ Eh for all φ, φ minimizes φ 7→ L̃(φ) := L(φȟ, φ) say
for instance in L∞(Y,BY , ν).

In particular for all f ∈ C0(Y,R):

lim
r→0+

1

r
[L̃(φ+ rf)− L̃(φ)] ≥ 0 (26)

1

r
[L̃(φ+ rf)− L̃(φ)] =

∫
Y

fdν +

∫
Ω

1

r
[(φ+ rf)ȟ − φ

ȟ
]dµ

Proposition 3, yields first:

lim
1

r
[(φ+ rf)ȟ(x)− φ

ȟ
(x)] = −f(s(x)), µ-a.e. (27)

on the other hand:

|1
r
[(φ+ rf)ȟ − φ

ȟ
]| ≤ ‖f‖∞ (28)

(26), (27), (28) and Lebesgue’s Dominated Convergence Theorem yield then:∫
Y

fdν −
∫

Ω

f(s(x))dµ(x) ≥ 0 (29)

and the converse inequality obviously holds changing f into −f . To sum up,
we have proved: ∫

Y

fdν =

∫
Ω

f(s(x))dµ(x) (30)

for all f ∈ C0(Y,R) so that ν = s]µ. In other words s ∈ ∆(µ, ν) and
γ := (id, s)]µ ∈ Γ(µ, ν). Now note that since ψ(x) + φ(s(x)) = h(x, s(x))
and using s]µ = ν we have:

L(ψ, φ) = inf(D) =

∫
Ω

[ψ(x) + φ(s(x))]dµ(x)

=

∫
Ω

h(x, s(x))dµ(x) = J(s) = K(γ)

Finally, using (20) we get:

J(s) = sup(M) = K(γ) = sup(MK) = inf(D) (31)

which proves that s is a solution of(M) and γ is a solution of (MK), hence
the desired result.
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The last thing to prove is uniqueness:

Lemma 3 Let (ψ, φ), s and γ be as in the previous Lemma, the following
assertions hold:

1) if (ψ, φ) is a solution of (D) then there exists a constant a such that:

ψ − ψ = a, µ-a.e.,

φ− φ = −a, ν-a.e.,

2) if s is a solution of (M) then s = s µ-a.e.,

3) γ := (id, s)]µ is the unique solution of (MK).

Proof.

1) Assume that (ψ, φ) is a solution of (D) then, using Lemma 1, we may
assume that

ψ = φȟ and φ = ψh

let s be some Borel selection of ∂hψ. We already know that s is a solution
of (M) by Lemma 2. Young’s inequality yields:

ψ(x) + φ(s(x)) ≥ h(x, s(x)), for all x ∈ Ω (32)

using J(s) = L(ψ, φ) and the fact that s ∈ ∆(µ, ν) we get:

L(ψ, φ) =

∫
Ω

[ψ(x) + φ(s(x))]dµ(x) =

∫
Ω

h(x, s(x))dµ(x) (33)

(33) and (32) yield:

ψ(x) + φ(s(x)) = h(x, s(x)), for µ-almost every x ∈ Ω

or equivalently s(x) ∈ ∂hψ(x) a.e..

Finally, Corollary 1 implies that there exists some constant a

ψ − ψ = a, µ-a.e. and φ− φ = −a ν-a.e.

2) Similarly, if s is a solution of (M) then

ψ(x) + φ(s(x)) = h(x, s(x)), for µ-almost every x ∈ Ω

and then s = s µ-a.e.
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3) Let γ be a solution of (MK) so that:

K(γ) =

∫
Ω×Y

hdγ = L(ψ, φ) =

∫
Ω×Y

[ψ(x) + φ(y)]dγ(x, y) (34)

since (ψ, φ) ∈ Eh we get:

h(x, y) = ψ(x) + φ(y), γ-a.e. (35)

Let G(s) be the graph of s and G(∂hψ) be that of ∂hψ, (35) implies:

γ(G(s)) = γ(G(∂hψ)) = 1. (36)

Let A be some Borel subset of Ω and B be some Borel subset of Y , by (36),
we get:

γ(A×B) = γ(A×B ∩G(s))

using (36) once again, we get then:

γ(A×B) = γ((A ∩ s−1(B))× Y )

and since π1]γ = µ:

γ(A×B) = µ(A ∩ s−1(B)) = γ(A×B)

so that γ = γ which ends the proof.

We end this section by a Polar-Factorization type consequence of the
main result:

Corollary 2 Up to µ-a.e. equivalence there exists a unique Borel map s
such that:

1) there exists some h-convex potential ψ such that s(x) ∈ ∂hψ(x) for all
x ∈ Ω,

2) s pushes forward µ through ν.

Proof. s defined as previously, satifies the desired result, now, if s satisfies
1) and 2) then

J(s) = L(ψ, ψh) ≥ inf(D) = sup(M)

so that, using Lemma 3, s = s µ-a.e.
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4 Economic application and generalized Spence-

Mirrlees condition

We end this article by an application of our result to the theory of incentives.
More precisely, we are going to prove a re-allocation principle that generalizes
a well-known one in dimension 1.

Assume that agents’ preferences are given by the quasi-linear utility func-
tion:

V (x, y, t) = h(x, y) + t,

where x ∈ Ω is the agent’s type or parameter, y ∈ Y is an action and t ∈ R is
some monetary compensatory transfer. We make the same assumptions on
Ω, Y , h and µ as previously. Note that in this case, the probability measure
µ captures the distribution of types among agents.

A key concept in that theory is that of incentive-compatible contracts :

Definition 4 1) A contract is a pair of functions (s, t) : Ω → Y × R.

2) The potential associated with a contract (s, t) is the function Vs,t defined
by:

Vs,t(x) := h(x, s(x)) + t(x) for all x ∈ Ω.

3) The contract (s, t) is incentive-compatible if and only if:

h(x, s(x)) + t(x) ≥ h(x, s(x′)) + t(x′), for all(x, x′) ∈ Ω2. (37)

4) A function s : Ω → Y is implementable if and only if there exists t :
Ω → R such that (s, t) is incentive-compatible.

Remark. The incentive-compatibility condition (37) means that it is opti-
mal for every agent to announce his true parameter.

4.1 The usual Spence-Mirrlees condition and the one
dimensional case

In the special one-dimensional case i.e. Ω = (a, b), Y = [α, β] and under the
assumption that h is of class C2 and satisfies the Spence-Mirrlees condition:

∂2h

∂x∂y
> 0 (38)

then we have the standard characterization result (see [17], [24], [21]):
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Proposition 4 s is implementable if and only if s is nondecreasing.

Remark. Note that Spence-Mirrlees condition (38) implies our assump-
tion (3) on h.

In this one-dimensional case and under assumption (38), we also have the
other characterization:

Lemma 4 The following assertions are equivalent:

1) s is nondecreasing

2) there exists ψ h-convex such that s(x) ∈ ∂hψ(x) for all x ∈ Ω.

Proof. First assume that s is nondecreasing and define:

ψ(x) :=

∫ x

a

∂h

∂x
(t, s(t))dt

we are going to prove that ψ is h-convex and s(x) ∈ ∂hψ(x) for all x. Define
for all x:

ψ̃(x) := sup
x′∈Ω

ψ(x′) + h(x, s(x′))− h(x′, s(x′))

ψ̃ is h-convex and ψ̃ ≥ ψ, let us show that ψ ≥ ψ̃. Let x′ ∈ Ω, we have:

ψ(x)− ψ(x′)− h(x, s(x′)) + h(x′, s(x′))

=

∫ x′

x

[
∂h

∂x
(t, s(x′))− ∂h

∂x
(t, s(t))]dt

and the latter is nonnegative using the fact that s is nondecreasing and (38).

This yields ψ = ψ̃ so that ψ is h-convex and the previous computation also
yields s(x) ∈ ∂hψ(x).

Conversely assume that for all x, s(x) ∈ ∂hψ(x) for some h-convex ψ. We
have:

ψ(x′)− ψ(x) ≥ h(x′, s(x))− h(x, s(x))

and
ψ(x)− ψ(x′) ≥ h(x, s(x′))− h(x′, s(x′))

so that:

h(x′, s(x))− h(x, s(x)) + h(x, s(x′))− h(x′, s(x′)) ≤ 0

or equivalently: ∫ x′

x

[
∂h

∂x
(t, s(x))− ∂h

∂x
(t, s(x′))]dt ≤ 0
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note finally that, with (38), the previous expression has the sign of (x′ −
x)(s(x)− s(x′)) so that s is nondecreasing.

The previous characterizations can be viewed equivalently as a re-allocation
principle via monotone rearrangements:

Proposition 5 Let s0 be some Borel map : Ω → Y and let s̃ be the non
decreasing rearrangement of s0 with respect to µ then s̃ is the only Borel map
which satisfies:

1) s̃ is implementable,

2) s̃ and s0 are equimeasurable i.e. : s̃]µ = s0]µ.

For properties of monotone rearrangements see [18]. Recall that s̃ is
defined as follows; first define:

Fs0(y) := µ({s0 < y}), for all y ∈ Y

then, for all x ∈ Ω:

s̃(x) := inf{y ∈ Y s.t. Fs0(y) > x}.

Remark. s̃ is the solution of:

sup
s∈∆(µ,s0]µ)

∫
Ω

h(x, s(x))dµ(x)

In other words, s̃ maximizes the average surplus in the class of maps that
have the same cumulative function as s0.

The previous remark can be viewed as an easy consequence of Hardy-
Littlewood inequality (see [18]).

Let us finally note that if h and g both satisfy (38) then the associated
Monge’s problems have the same solution. Of course, this result is very
specific of the one-dimensional problem.

Proposition 6 Let h and g be two functions from Ω × Y to R of class C2

that both satisfy (38); let ν be some Radon probability measure on Y . Then
both problems:

sup
s∈∆(µ,ν)

Jh(s) :=

∫
Ω

h(x, s(x))dµ(x)
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and

sup
s∈∆(µ,ν)

Jg(s) :=

∫
Ω

g(x, s(x))dµ(x)

have the same solution.

Proof. Let s be the maximizer of Jh over ∆(µ, ν), from Lemma 4 and
Theorem 1, s is nondecreasing. There exists then ψ g-convex such that
s(x) ∈ ∂gψ(x) for all x and since s]µ = ν, s maximizes Jg over ∆(µ, ν).

4.2 Re-allocation principle in the general case

Our aim now is to consider the general problem where Ω is a bounded con-
nected open subset of Rn, and µ is some probability measure in Ω which
is absolutely continuous with a positive Radon-Nikodym derivative with re-
spect to the n-dimensional Lebesgue measure, and such that µ(∂Ω) = 0, Y
is a compact Polish space and h satisfies (1), (2) and (3).

We shall prove a similar re-allocation principle as in the one dimensional
case so that (3) is a natural generalization of the Spence-Mirrlees condition.
A first attempt was made by Mc Afee and Mc Millan in [15] to characterize
incentive-compatibility in a multi-dimensional setting, the condition of these
authors is much stronger than (3) and their characterization requires s to be
differentiable which is of course not required in what follows since Y need
not have a linear structure.

We start by a characterization result that can be found in [5]

Proposition 7 Let s : Ω → Y and t : Ω → R then we have:

1) (s, t) is incentive-compatible if and only if

Vs,t is h-convex, and

s(x) ∈ ∂hVs,t(x) for all x ∈ Ω.

2) s is implementable if and only if there exists some h-convex function
ψ such that:

s(x) ∈ ∂hψ(x) for all x ∈ Ω.

Then the re-allocation principle can be stated as:
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Theorem 2 Let s0 be an arbitrary Borel function Ω → Y , there exists a
unique (up to a.e. equivalence) Borel map s such that:

1) s is implementable,

2) s0 and s are equimeasurable i.e. s]µ = s0]µ.

Moreover, s is the solution of the Monge’s Problem:

sup
s∈∆(µ,s0]µ)

∫
Ω

h(x, s(x))dµ(x). (39)

Proof. Proof follows directly from Theorem 1 and Proposition 7.

Remark. The economic interpretation of this result is the following : any
allocation plan can be rearranged into some implementable one in a unique
way ; s is therefore in some sense a monotone rearrangement of s0 and it is
obtained by maximizing the average surplus in the set of measure-preserving
maps ∆(µ, s0]µ).

Moreover, at least from a theoretical point of view, one can use our main
result to find a tarif t such that the pair (s, t) is incentive compatible. Let
(ψ, φ) be a solution of the dual problem of (39), and define for all x ∈ Ω:

t(x) := −φ(s(x)) = −h(x, s(x)) + ψ(x),

then it can be checked easily that the pair (s, t) is an incentive-compatible
contract, let us indeed consider a pair of types (x, x′), we have:

h(x, s(x)) + t(x) = ψ(x) = φ
ȟ
(x) ≥ h(x, s(x′))− φ(s(x′))

= h(x, s(x′)) + t(x′).
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