Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms
Gravejat, Philippe; Lewin, Mathieu; Séré, Eric (2009), Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms, Communications in Mathematical Physics, 286, 1, p. 179-215. http://dx.doi.org/10.1007/s00220-008-0660-9
Type
Article accepté pour publication ou publiéDate
2009Journal name
Communications in Mathematical PhysicsVolume
286Number
1Publisher
Springer
Pages
179-215
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant $\alpha$. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an $L^1$ function and compute the effective charge of the system, recovering the usual renormalization of charge: the physical coupling constant is related to $\alpha$ by the formula $\alpha_{\rm phys}\simeq \alpha(1+2\alpha/(3\pi)\log\Lambda)^{-1}$, where $\Lambda$ is the ultraviolet cut-off. We eventually prove an estimate on the highest number of electrons which can be bound by a nucleus of charge $Z$. In the nonrelativistic limit, we obtain that this number is $\leq 2Z$, recovering a result of Lieb. This work is based on a series of papers by Hainzl, Lewin, Sere and Solovej on the mean-field approximation of no-photon QED.Subjects / Keywords
Analysis of PDEs; Physics; Mathematical Physics; MathematicsRelated items
Showing items related by title and author.
-
Gravejat, Philippe; Lewin, Mathieu; Séré, Eric (2011) Article accepté pour publication ou publié
-
Séré, Eric; Lewin, Mathieu; Hainzl, Christian; Gravejat, Philippe (2013) Article accepté pour publication ou publié
-
Solovej, Jan Philip; Séré, Eric; Lewin, Mathieu; Hainzl, Christian (2007-06) Article accepté pour publication ou publié
-
Hainzl, Christian; Lewin, Mathieu; Séré, Eric (2009) Article accepté pour publication ou publié
-
Gravejat, Philippe; Hainzl, Christian; Lewin, Mathieu; Séré, Eric (2016) Communication / Conférence