Show simple item record

dc.contributor.authorSantambrogio, Filippo
dc.contributor.authorJimenez, Chloé
dc.contributor.authorCarlier, Guillaume
dc.date.accessioned2009-07-08T15:37:04Z
dc.date.available2009-07-08T15:37:04Z
dc.date.issued2008
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/1013
dc.language.isoenen
dc.subjectWardrop equilibria
dc.subjecttraffic congestion
dc.subjectoptimal transportation
dc.subject.ddc519
dc.titleOptimal transportation with traffic congestion and Wardrop equilibriaen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherCNRS - Université de Bretagne Occidentale - Brest;France
dc.contributor.editoruniversityotherScuola Normale Superiore;Italie
dc.description.abstractenIn the classical Monge–Kantorovich problem, the transportation cost depends only on the amount of mass sent from sources to destinations and not on the paths followed by this mass. Thus, it does not allow for congestion effects. Using the notion of traffic intensity, we propose a variant, taking into account congestion. This variant is a continuous version of a well-known traffic problem on networks that is studied both in economics and in operational research. The interest of this problem is in its relations with traffic equilibria of Wardrop type. What we prove in the paper is exactly the existence and the variational characterization of equilibria in a continuous space setting.
dc.relation.isversionofjnlnameSIAM Journal on Control and Optimization
dc.relation.isversionofjnlvol47en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2008
dc.relation.isversionofjnlpages1330-1350en
dc.relation.isversionofdoihttp://dx.doi.org/10.1137/060672832
dc.description.sponsorshipprivateouien
dc.subject.ddclabelProbabilités et mathématiques appliquées


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record