Intersections of finitely generated maximal partial clones
Haddad, Lucien; Couceiro, Miguel (2012), Intersections of finitely generated maximal partial clones, Journal of Multiple-Valued Logic and Soft Computing, 19, 1-3, p. 85-94
Type
Article accepté pour publication ou publiéDate
2012Journal name
Journal of Multiple-Valued Logic and Soft ComputingVolume
19Number
1-3Publisher
Old City Publishing
Pages
85-94
Metadata
Show full item recordAbstract (EN)
Let A be a finite non-singleton set. For A = {0, 1} we show that the set of all self-dual monotonic partial functions is a not finitely generated partial clone on {0, 1} and that it contains a family of partial subclones of continuum cardinality. Moreover, for |A| ≥ 3, we show that there are pairs of finitely generated maximal partial clones whose intersection is a not finitely generated partial clone on A.Subjects / Keywords
partial clones; Generating setsRelated items
Showing items related by title and author.
-
Haddad, Lucien; Couceiro, Miguel (2010) Communication / Conférence
-
Haddad, Lucien; Couceiro, Miguel (2012) Communication / Conférence
-
Couceiro, Miguel; Haddad, Lucien; Schölzel, Karsten; Waldhauser, Tamás (2017) Article accepté pour publication ou publié
-
Couceiro, Miguel; Haddad, Lucien; Schölzel, Karsten; Waldhauser, Tamás (2013) Communication / Conférence
-
Couceiro, Miguel; Haddad, Lucien; Scholzel, Karsten; Waldhauser, Tamás (2014) Communication / Conférence