Show simple item record

dc.contributor.authorHaddad, Lucien
dc.contributor.authorCouceiro, Miguel
HAL ID: 1498
dc.date.accessioned2012-09-26T10:27:23Z
dc.date.available2012-09-26T10:27:23Z
dc.date.issued2012
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/10210
dc.language.isoenen
dc.subjectpartial clonesen
dc.subjectGenerating setsen
dc.subject.ddc512en
dc.titleIntersections of finitely generated maximal partial clonesen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherRoyal Military College of Canada;
dc.description.abstractenLet A be a finite non-singleton set. For A = {0, 1} we show that the set of all self-dual monotonic partial functions is a not finitely generated partial clone on {0, 1} and that it contains a family of partial subclones of continuum cardinality. Moreover, for |A| ≥ 3, we show that there are pairs of finitely generated maximal partial clones whose intersection is a not finitely generated partial clone on A.en
dc.relation.isversionofjnlnameJournal of Multiple-Valued Logic and Soft Computing
dc.relation.isversionofjnlvol19en
dc.relation.isversionofjnlissue1-3en
dc.relation.isversionofjnldate2012
dc.relation.isversionofjnlpages85-94en
dc.relation.isversionofjnlpublisherOld City Publishingen
dc.subject.ddclabelAlgèbreen
dc.relation.forthcomingnonen
dc.relation.forthcomingprintnonen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record