Congested traffic equilibria and degenerate anisotropic PDEs
Carlier, Guillaume; Brasco, Lorenzo (2013), Congested traffic equilibria and degenerate anisotropic PDEs, Dynamic Games and Applications, 3, 4, p. 508-522. http://dx.doi.org/10.1007/s13235-013-0081-z
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00734555Date
2013Journal name
Dynamic Games and ApplicationsVolume
3Number
4Publisher
Springer
Pages
508-522
Publication identifier
Metadata
Show full item recordAbstract (EN)
Congested traffic problems on very dense networks lead, at the limit, to minimization problems posed on measures on curves as shown in Baillon and Carlier (Netw. Heterogenous Media 7: 219--241, 2012). Here, we go one step further by showing that these problems can be reformulated in terms of the minimization of an integral functional over a set of vector fields with prescribed divergence. We prove a Sobolev regularity result for their minimizers despite the fact that the Euler-Lagrange equation of the dual is highly degenerate and anisotropic. This somehow extends the analysis of Brasco et al. (J. Math. Pures Appl. 93: 652--671, 2010) to the anisotropic case.Subjects / Keywords
regularity; anisotropic and degenerate PDEs; traffic congestionRelated items
Showing items related by title and author.
-
Brasco, Lorenzo; Carlier, Guillaume; Santambrogio, Filippo (2010) Article accepté pour publication ou publié
-
Carlier, Guillaume; Brasco, Lorenzo (2013) Article accepté pour publication ou publié
-
Hatchi, Roméo (2017) Chapitre d'ouvrage
-
Santambrogio, Filippo; Jimenez, Chloé; Carlier, Guillaume (2008) Article accepté pour publication ou publié
-
Santambrogio, Filippo; Carlier, Guillaume (2012) Article accepté pour publication ou publié