• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Axiomatizations of quasi-Lovász extensions of pseudo-Boolean functions

Marichal, Jean-Luc; Couceiro, Miguel (2011), Axiomatizations of quasi-Lovász extensions of pseudo-Boolean functions, Aequationes Mathematicae, 82, 3, p. 213-231. http://dx.doi.org/10.1007/s00010-011-0091-0

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1011.6302
Date
2011
Journal name
Aequationes Mathematicae
Volume
82
Number
3
Publisher
Springer
Pages
213-231
Publication identifier
http://dx.doi.org/10.1007/s00010-011-0091-0
Metadata
Show full item record
Author(s)
Marichal, Jean-Luc
Couceiro, Miguel
Abstract (EN)
We introduce the concept of quasi-Lovász extension as being a mapping f:InR defined on a nonempty real interval I containing the origin and which can be factorized as f(x 1, . . . , x n ) = L(φ(x 1), . . . , φ(x n )), where L is the Lovász extension of a pseudo-Boolean function :01nR (i.e., the function L:RnR whose restriction to each simplex of the standard triangulation of [0, 1] n is the unique affine function which agrees with ψ at the vertices of this simplex) and :IR is a nondecreasing function vanishing at the origin. These functions appear naturally within the scope of decision making under uncertainty since they subsume overall preference functionals associated with discrete Choquet integrals whose variables are transformed by a given utility function. To axiomatize the class of quasi-Lovász extensions, we propose generalizations of properties used to characterize Lovász extensions, including a comonotonic version of modularity and a natural relaxation of homogeneity. A variant of the latter property enables us to axiomatize also the class of symmetric quasi-Lovász extensions, which are compositions of symmetric Lovász extensions with 1-place non decreasing odd functions.
Subjects / Keywords
Aggregation function; discrete Choquet integral; Lovász extension; functional equation; comonotonic modularity; invariance under horizontal difference; axiomatization

Related items

Showing items related by title and author.

  • Thumbnail
    Axiomatizations of Lovász extensions of pseudo-Boolean functions 
    Marichal, Jean-Luc; Couceiro, Miguel (2012-09-27) Article accepté pour publication ou publié
  • Thumbnail
    Hierarchies of local monotonicities and lattice derivatives for Boolean and pseudo-Boolean functions 
    Waldhauser, Tamás; Marichal, Jean-Luc; Couceiro, Miguel (2012) Communication / Conférence
  • Thumbnail
    Quasi-Lovasz extensions and their symmetric counterparts 
    Marichal, Jean-Luc; Couceiro, Miguel (2012) Communication / Conférence
  • Thumbnail
    Quasi-Lovász Extensions on Bounded Chains 
    Couceiro, Miguel; Marichal, Jean-Luc (2014) Communication / Conférence
  • Thumbnail
    Locally monotone Boolean and pseudo-Boolean functions 
    Waldhauser, Tamás; Marichal, Jean-Luc; Couceiro, Miguel (2012) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo