
Differentiability properties of Rank-Linear Utilities
Carlier, Guillaume (2008), Differentiability properties of Rank-Linear Utilities, Journal of Mathematical Economics, 44, 1, p. 15-23. http://dx.doi.org/10.1016/j.jmateco.2007.04.002
View/ Open
Type
Article accepté pour publication ou publiéDate
2008Journal name
Journal of Mathematical EconomicsVolume
44Number
1Publisher
Elsevier
Pages
15-23
Publication identifier
Metadata
Show full item recordAuthor(s)
Carlier, GuillaumeAbstract (EN)
We study the differentiability properties of concave functionals defined as integrals of the quantile. These functionals generalize the rank dependent expected utility and are called rank-linear utilities in decision theory. Their superdifferential is described as well as the set of random variables where they are Gâteaux-differentiable. Our results generalize those obtained for the rank dependent expected utility in Ref. [Carlier, G., Dana, R.-A., 2003. Core of a convex distortion of a probability. Journal of Economic Theory 113, 199–222.].Subjects / Keywords
Optimization and controlRelated items
Showing items related by title and author.
-
Carlier, Guillaume (2022) Article accepté pour publication ou publié
-
Liard, Thibault; Lissy, Pierre (2017) Article accepté pour publication ou publié
-
Dana, Rose-Anne; Carlier, Guillaume (2008) Article accepté pour publication ou publié
-
Shahidi, Niousha; Carlier, Guillaume; Dana, Rose-Anne (2003) Article accepté pour publication ou publié
-
Carlier, Guillaume; Dana, Rose-Anne (2011) Article accepté pour publication ou publié