The arity gap of order-preserving functions and extensions of pseudo-Boolean functions
Waldhauser, Tamás; Lehtonen, Erkko; Couceiro, Miguel (2012), The arity gap of order-preserving functions and extensions of pseudo-Boolean functions, Discrete Applied Mathematics, 160, 4-5, p. 383-390. http://dx.doi.org/10.1016/j.dam.2011.07.024
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/1003.2192Date
2012Journal name
Discrete Applied MathematicsVolume
160Number
4-5Publisher
Elsevier
Pages
383-390
Publication identifier
Metadata
Show full item recordAbstract (EN)
The aim of this paper is to classify order-preserving functions according to their arity gap. Noteworthy examples of order-preserving functions are the so-called aggregation functions. We first explicitly classify the Lovász extensions of pseudo-Boolean functions according to their arity gap. Then we consider the class of order-preserving functions between partially ordered sets, and establish a similar explicit classification for this function class.Subjects / Keywords
Arity gap; order-preserving function; aggregation function; Owen extension; Lovász extensionRelated items
Showing items related by title and author.
-
Waldhauser, Tamás; Lehtonen, Erkko; Couceiro, Miguel (2012) Article accepté pour publication ou publié
-
Hierarchies of local monotonicities and lattice derivatives for Boolean and pseudo-Boolean functions Waldhauser, Tamás; Marichal, Jean-Luc; Couceiro, Miguel (2012) Communication / Conférence
-
Waldhauser, Tamás; Marichal, Jean-Luc; Couceiro, Miguel (2012) Article accepté pour publication ou publié
-
Lehtonen, Erkko; Couceiro, Miguel; Couceiro, Miguel (2008) Communication / Conférence
-
Waldhauser, Tamás; Lehtonen, Erkko; Couceiro, Miguel (2015) Article accepté pour publication ou publié