Decompositions of functions based on arity gap
dc.contributor.author | Waldhauser, Tamás | |
dc.contributor.author | Lehtonen, Erkko
HAL ID: 737805 ORCID: 0000-0002-9255-5876 | |
dc.contributor.author | Couceiro, Miguel
HAL ID: 1498 | |
dc.date.accessioned | 2012-09-26T14:43:07Z | |
dc.date.available | 2012-09-26T14:43:07Z | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/10244 | |
dc.language.iso | en | en |
dc.subject | Arity gap | en |
dc.subject | variable identification minor | en |
dc.subject | Boolean group | en |
dc.subject.ddc | 512 | en |
dc.title | Decompositions of functions based on arity gap | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | University of Szeged; | |
dc.contributor.editoruniversityother | Universite du Luxembourg; | |
dc.description.abstracten | We study the arity gap of functions of several variables defined on an arbitrary set A and valued in another set B. The arity gap of such a function is the minimum decrease in the number of essential variables when variables are identified. We establish a complete classification of functions according to their arity gap, extending existing results for finite functions. This classification is refined when the codomain B has a group structure, by providing unique decompositions into sums of functions of a prescribed form. As an application of the unique decompositions, in the case of finite sets we count, for each n and p, the number of n-ary functions that depend on all of their variables and have arity gap p. | en |
dc.relation.isversionofjnlname | Discrete Mathematics | |
dc.relation.isversionofjnlvol | 312 | en |
dc.relation.isversionofjnlissue | 2 | en |
dc.relation.isversionofjnldate | 2012 | |
dc.relation.isversionofjnlpages | 238-247 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.disc.2011.08.028 | en |
dc.identifier.urlsite | http://arxiv.org/abs/1003.1294 | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Algèbre | en |
dc.relation.forthcoming | non | en |
dc.relation.forthcomingprint | non | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |