The fixed energy problem for a class of nonconvex singular Hamiltonian systems
Tanaka, Kazunaga; Séré, Eric; Carminati, Carlo (2006), The fixed energy problem for a class of nonconvex singular Hamiltonian systems, Journal of Differential Equations, 230, 1, p. 362-377. http://dx.doi.org/10.1016/j.jde.2006.01.021
Type
Article accepté pour publication ou publiéDate
2006Journal name
Journal of Differential EquationsVolume
230Number
1Publisher
Elsevier
Pages
362-377
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider a noncompact hypersurface H in R2N which is the energy level of a singular Hamiltonian of “strong force” type. Under global geometric assumptions on H, we prove that it carries a closed characteristic, as a consequence of a result by Hofer and Viterbo on the Weinstein conjecture in cotangent bundles of compact manifolds. Our theorem contains, as particular cases, earlier results on the fixed energy problem for singular Lagrangian systems of strong force type.Subjects / Keywords
Hamiltonian system; Hypersurface of contact type; Closed characteristic; Cotangent bundle; Critical point theory; Variational methods; Singular potential; Strong force; Weinstein conjectureRelated items
Showing items related by title and author.
-
Bounemoura, Abed; Kaloshin, Vadim (2014) Article accepté pour publication ou publié
-
Jézéquel, Tiphaine; Bernard, Patrick; Lombardi, Eric (2014) Document de travail / Working paper
-
Jézéquel, Tiphaine; Bernard, Patrick; Lombardi, Eric (2016) Article accepté pour publication ou publié
-
Séré, Eric (1992) Article accepté pour publication ou publié
-
Ekeland, Ivar; Séré, Eric (2019) Document de travail / Working paper