Show simple item record

dc.contributor.authorTanaka, Kazunaga
dc.contributor.authorSéré, Eric
HAL ID: 171149
dc.contributor.authorCarminati, Carlo
dc.date.accessioned2009-07-09T10:22:52Z
dc.date.available2009-07-09T10:22:52Z
dc.date.issued2006
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/1025
dc.language.isoenen
dc.subjectHamiltonian systemen
dc.subjectHypersurface of contact type
dc.subjectClosed characteristic
dc.subjectCotangent bundle
dc.subjectCritical point theory
dc.subjectVariational methods
dc.subjectSingular potential
dc.subjectStrong force
dc.subjectWeinstein conjecture
dc.subject.ddc519en
dc.titleThe fixed energy problem for a class of nonconvex singular Hamiltonian systemsen
dc.typeArticle accepté pour publication ou publiéen_US
dc.contributor.editoruniversityotherUniversité de Pise, Pise;Italie
dc.contributor.editoruniversityotherSchool of Science and Engineering, Waseda University;Japon
dc.description.abstractenWe consider a noncompact hypersurface H in R2N which is the energy level of a singular Hamiltonian of “strong force” type. Under global geometric assumptions on H, we prove that it carries a closed characteristic, as a consequence of a result by Hofer and Viterbo on the Weinstein conjecture in cotangent bundles of compact manifolds. Our theorem contains, as particular cases, earlier results on the fixed energy problem for singular Lagrangian systems of strong force type.en
dc.relation.isversionofjnlnameJournal of Differential Equations
dc.relation.isversionofjnlvol230en
dc.relation.isversionofjnlissue1en
dc.relation.isversionofjnldate2006-11
dc.relation.isversionofjnlpages362-377en
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.jde.2006.01.021en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevieren
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record