Interpolation by polynomial functions of distributive lattices: a generalization of a theorem of R. L. Goodstein
dc.contributor.author | Waldhauser, Tamás | |
dc.contributor.author | Couceiro, Miguel
HAL ID: 1498 | |
dc.date.accessioned | 2012-09-28T07:50:06Z | |
dc.date.available | 2012-09-28T07:50:06Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/10319 | |
dc.description | Référence ArXiV indiquée ci-dessous sous le titre : "A generalization of Goodstein's theorem: interpolation by polynomial functions of distributive lattices" | en |
dc.language.iso | en | en |
dc.subject | Lattice polynomial function | en |
dc.subject | distributive lattice | en |
dc.subject | polynomial interpolation | en |
dc.subject | Goodstein's theorem | en |
dc.subject | disjunctive normal form | en |
dc.subject.ddc | 512 | en |
dc.title | Interpolation by polynomial functions of distributive lattices: a generalization of a theorem of R. L. Goodstein | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | University of Szeged; | |
dc.description.abstracten | We consider the problem of interpolating functions partially defined over a distributive lattice, by means of lattice polynomial functions. Goodstein's theorem solves a particular instance of this interpolation problem on a distributive lattice L with least and greatest elements 0 and 1, resp.: Given an n-ary partial function f over L, defined on all 0-1 tuples, f can be extended to a lattice polynomial function p over L if and only if f is monotone; in this case, the interpolating polynomial p is unique. We extend Goodstein's theorem to a wider class of n-ary partial functions f over a distributive lattice L, not necessarily bounded, where the domain of f is a cuboid of the form D={a1,b1}x...x{an,bn} with ai<bi, and determine the class of such partial functions which can be interpolated by lattice polynomial functions. In this wider setting, interpolating polynomials are not necessarily unique; we provide explicit descriptions of all possible lattice polynomial functions which interpolate these partial functions, when such an interpolation is available. | en |
dc.relation.isversionofjnlname | Algebra Universalis | |
dc.relation.isversionofjnlvol | 69 | |
dc.relation.isversionofjnlissue | 3 | |
dc.relation.isversionofjnldate | 2013 | |
dc.relation.isversionofjnlpages | 287-299 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00012-013-0231-6 | |
dc.identifier.urlsite | http://arxiv.org/abs/1110.0321 | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Algèbre | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |