Show simple item record

dc.contributor.authorWaldhauser, Tamás
dc.contributor.authorCouceiro, Miguel
HAL ID: 1498
dc.descriptionRéférence ArXiV indiquée ci-dessous sous le titre : "A generalization of Goodstein's theorem: interpolation by polynomial functions of distributive lattices"en
dc.subjectLattice polynomial functionen
dc.subjectdistributive latticeen
dc.subjectpolynomial interpolationen
dc.subjectGoodstein's theoremen
dc.subjectdisjunctive normal formen
dc.titleInterpolation by polynomial functions of distributive lattices: a generalization of a theorem of R. L. Goodsteinen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniversity of Szeged;
dc.description.abstractenWe consider the problem of interpolating functions partially defined over a distributive lattice, by means of lattice polynomial functions. Goodstein's theorem solves a particular instance of this interpolation problem on a distributive lattice L with least and greatest elements 0 and 1, resp.: Given an n-ary partial function f over L, defined on all 0-1 tuples, f can be extended to a lattice polynomial function p over L if and only if f is monotone; in this case, the interpolating polynomial p is unique. We extend Goodstein's theorem to a wider class of n-ary partial functions f over a distributive lattice L, not necessarily bounded, where the domain of f is a cuboid of the form D={a1,b1}x...x{an,bn} with ai<bi, and determine the class of such partial functions which can be interpolated by lattice polynomial functions. In this wider setting, interpolating polynomials are not necessarily unique; we provide explicit descriptions of all possible lattice polynomial functions which interpolate these partial functions, when such an interpolation is available.en
dc.relation.isversionofjnlnameAlgebra Universalis

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record