Pseudo-polynomial functions over finite distributive lattices
dc.contributor.author | Waldhauser, Tamás | |
dc.contributor.author | Couceiro, Miguel
HAL ID: 1498 | |
dc.date.accessioned | 2012-09-28T07:56:05Z | |
dc.date.available | 2012-09-28T07:56:05Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/10322 | |
dc.language.iso | en | en |
dc.subject | Sugeno integral | en |
dc.subject | distributive lattice | en |
dc.subject | lattice polynomial function | en |
dc.subject | pseudo-polynomial function | en |
dc.subject | axiomatization | en |
dc.subject | factorization | en |
dc.subject | multicriteria decision making | en |
dc.subject.ddc | 512 | en |
dc.title | Pseudo-polynomial functions over finite distributive lattices | en |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | University of Szeged; | |
dc.description.abstracten | In this paper we consider an aggregation model f: X1 x ... x Xn --> Y for arbitrary sets X1, ..., Xn and a finite distributive lattice Y, factorizable as f(x1, ..., xn) = p(u1(x1), ..., un(xn)), where p is an n-variable lattice polynomial function over Y, and each uk is a map from Xk to Y. The resulting functions are referred to as pseudo-polynomial functions. We present an axiomatization for this class of pseudo-polynomial functions which differs from the previous ones both in flavour and nature, and develop general tools which are then used to obtain all possible such factorizations of a given pseudo-polynomial function. | en |
dc.relation.isversionofjnlname | Fuzzy Sets and Systems | |
dc.relation.isversionofjnlvol | 239 | |
dc.relation.isversionofjnldate | 2014 | |
dc.relation.isversionofjnlpages | 21-34 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1016/j.fss.2012.09.007 | |
dc.identifier.urlsite | http://arxiv.org/abs/1110.1811 | en |
dc.relation.isversionofjnlpublisher | Elsevier | en |
dc.subject.ddclabel | Algèbre | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |