• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Efficient learning in ABC algorithms

Obert, Christian P. R; Pudlo, Pierre; Marin, Jean-Michel; Cornuet, Jean-Marie; Sedki, Mohammed (2012), Efficient learning in ABC algorithms. https://basepub.dauphine.fr/handle/123456789/10474

Type
Document de travail / Working paper
External document link
http://fr.arxiv.org/abs/1210.1388
Date
2012
Publisher
Université Paris-Dauphine
Published in
Paris
Pages
24
Metadata
Show full item record
Author(s)
Obert, Christian P. R

Pudlo, Pierre

Marin, Jean-Michel cc

Cornuet, Jean-Marie

Sedki, Mohammed
Abstract (EN)
Approximate Bayesian Computation has been successfully used in population genetics models to bypass the calculation of the likelihood. These algorithms provide an accurate estimator by comparing the observed dataset to a sample of datasets simulated from the model. Although parallelization is easily achieved, computation times for assuring a suitable approximation quality of the posterior distribution are still long. To alleviate this issue, we propose a sequential algorithm adapted from Del Moral et al. (2012) which runs twice as fast as traditional ABC algorithms. Its parameters are calibrated to minimize the number of simulations from the model.
Subjects / Keywords
population genetics; Approximate Bayesian Computation; Sequential Monte Carlo; likelihood-free sampler
JEL
C15 - Statistical Simulation Methods: General
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Reliable ABC model choice via random forests 
    Pudlo, Pierre; Marin, Jean-Michel; Estoup, Arnaud; Cornuet, Jean-Marie; Gautier, Mathieu; Robert, Christian P. (2016) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. 
    Cornuet, Jean-Marie; Robert, Christian P.; Pudlo, Pierre; Guillemaud, Thomas; Marin, Jean-Michel; Lombaert, Eric; Estoup, Arnaud (2012) Article accepté pour publication ou publié
  • Thumbnail
    Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation 
    Estoup, Arnaud; Marin, Jean-Michel; Robert, Christian P.; Beaumont, Mark A.; Santos, Filipe; Guillemaud, Thomas; Balding, David; Cornuet, Jean-Marie (2008-04) Article accepté pour publication ou publié
  • Thumbnail
    Lack of confidence in approximate Bayesian computation model choice 
    Robert, Christian P.; Cornuet, Jean-Marie; Marin, Jean-Michel; Pillai, Natesh S. (2011) Article accepté pour publication ou publié
  • Thumbnail
    ABC random forests for Bayesian parameter inference 
    Raynal, Louis; Marin, Jean-Michel; Pudlo, Pierre; Ribatet, Mathieu; Robert, Christian P.; Estoup, Arnaud (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo