
On "Arnold's theorem" on the stability of the solar system
Féjoz, Jacques (2013), On "Arnold's theorem" on the stability of the solar system, Discrete and Continuous Dynamical Systems. Series A, 33, 8, p. 3555-3565. http://dx.doi.org/10.3934/dcds.2013.33.3555
Voir/Ouvrir
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00741551Date
2013Nom de la revue
Discrete and Continuous Dynamical Systems. Series AVolume
33Numéro
8Éditeur
American Institute of Mathematical Sciences
Pages
3555-3565
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Féjoz, JacquesRésumé (EN)
Arnold's theorem on the planetary problem states that, assuming that the masses of n planets are small enough, there exists in the phase space a set of initial conditions of positive Lebesgue measure, leading to quasiperiodic motions with 3n−1 frequencies. Arnold's initial proof is complete only for the plane 2-planet problem. Arnold had missed a resonance later discovered by Herman. The first complete proof, by Herman-Féjoz, relies on the weak non-degeneracy condition of Arnold-Pyartli. A second proof, by Chierchia-Pinzari, is closer to Arnold's initial idea and shows the strong non-degeneracy of the problem after suitable reduction by (part of) the symmetry of rotation. We review and compare these proofs. In an appendix, we define the Poincaré coordinates and prove their symplectic nature through the shortest possible computation.Mots-clés
non-degeneracy; Herman's resonance; resonance; solar system; KAM; stabilityPublications associées
Affichage des éléments liés par titre et auteur.
-
Féjoz, Jacques (2012) Article accepté pour publication ou publié
-
Féjoz, Jacques (2010) Document de travail / Working paper
-
Féjoz, Jacques (2004) Article accepté pour publication ou publié
-
Féjoz, Jacques (2005) Communication / Conférence
-
Caillau, Jean-Baptiste; Fejoz, Jacques; Orieux, Michaël; Roussarie, Robert (2022) Article accepté pour publication ou publié