
A New Lower Bound on the Independence Number of Graphs
Angel, Eric; Campigotto, Romain; Laforest, Christian (2013), A New Lower Bound on the Independence Number of Graphs, Discrete Applied Mathematics, 161, 6, p. 847-852. http://dx.doi.org/10.1016/j.dam.2012.10.001
View/ Open
Type
Article accepté pour publication ou publiéDate
2013Journal name
Discrete Applied MathematicsVolume
161Number
6Publisher
Elsevier
Pages
847-852
Publication identifier
Metadata
Show full item recordAbstract (EN)
We propose a new lower bound on the independence number of a graph. We show that our bound compares favorably to recent ones (e .g . [1 2]). We obtain our bound by using the Bhatia-Davis inequality applied with analytic al results (minimum, maximum, expectation and variance ) of an algorithm for the vertex cover problem.Subjects / Keywords
vertex cover; expectation; variance; graphs; independence numberRelated items
Showing items related by title and author.
-
Laforest, Christian; Campigotto, Romain; Angel, Eric (2012) Communication / Conférence
-
Lissy, Pierre (2015) Article accepté pour publication ou publié
-
Gontier, David; Hainzl, Christian; Lewin, Mathieu (2019-05) Article accepté pour publication ou publié
-
Benhamou, Eric; Melot, Valentin (2018) Document de travail / Working paper
-
Grosso, Andrea; Della Croce, Federico; Paschos, Vangelis (2004) Article accepté pour publication ou publié