• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

BSDEs with weak terminal condition

Bouchard, Bruno; Elie, Romuald; Réveillac, Anthony (2015), BSDEs with weak terminal condition, Annals of Probability, 43, 2, p. 572-604. 10.1214/14-AOP913

Type
Article accepté pour publication ou publié
Date
2015
Journal name
Annals of Probability
Volume
43
Number
2
Publisher
Institute of Mathematical Statistics
Published in
Paris
Pages
572-604
Publication identifier
10.1214/14-AOP913
Metadata
Show full item record
Author(s)
Bouchard, Bruno
Elie, Romuald
Réveillac, Anthony
Abstract (EN)
We introduce a new class of Backward Stochastic Differential Equations in which the $T$-terminal value $Y_{T}$ of the solution $(Y,Z)$ is not fixed as a random variable, but only satisfies a weak constraint of the form $E[\Psi(Y_{T})]\ge m$, for some (possibly random) non-decreasing map $\Psi$ and some threshold $m$. We name them \textit{BSDEs with weak terminal condition} and obtain a representation of the minimal time $t$-values $Y_{t}$ such that $(Y,Z)$ is a supersolution of the BSDE with weak terminal condition. It provides a non-Markovian BSDE formulation of the PDE characterization obtained for Markovian stochastic target problems under controlled loss in Bouchard, Elie and Touzi. We then study the main properties of this minimal value. In particular, we analyze its continuity and convexity with respect to the $m$-parameter appearing in the weak terminal condition, and show how it can be related to a dual optimal control problem in Meyer form. These last properties generalize to a non Markovian framework previous results on quantile hedging and hedging under loss constraints obtained in Föllmer and Leukert, and in Bouchard, Elie and Touzi. Finally, we observe a surprisingly strong connection between BSDEs with weak terminal condition and 2nd order BSDEs in the quasi linear case.
Subjects / Keywords
optimal control; stochastic target; Backward stochastic differential equations

Related items

Showing items related by title and author.

  • Thumbnail
    Regularity of BSDEs with a convex constraint on the gains-process 
    Bouchard, Bruno; Elie, Romuald; Moreau, Ludovic (2018) Article accepté pour publication ou publié
  • Thumbnail
    Discrete-Time Approximation of BSDEs and Probabilistic Schemes for Fully Nonlinear PDEs 
    Bouchard, Bruno; Elie, Romuald; Touzi, Nizar (2009) Chapitre d'ouvrage
  • Thumbnail
    Stochastic target problems with controlled loss 
    Bouchard, Bruno; Elie, Romuald; Touzi, Nizar (2009) Article accepté pour publication ou publié
  • Thumbnail
    Discrete-time approximation of decoupled Forward–Backward SDE with jumps 
    Bouchard, Bruno; Elie, Romuald (2008) Article accepté pour publication ou publié
  • Thumbnail
    Weak martingale representation for continuous Markov processes and application to quadratic growth BSDEs 
    Réveillac, Anthony (2011) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo