• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE

Kharroubi, Idris; Pham, Huyen (2015), Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE, Annals of Probability, 43, 4, p. 1823-1865. 10.1214/14-AOP920

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1212.2000v3
Date
2015
Journal name
Annals of Probability
Volume
43
Number
4
Publisher
Institute of Mathematical Statistics
Pages
1823-1865
Publication identifier
10.1214/14-AOP920
Metadata
Show full item record
Author(s)
Kharroubi, Idris
Pham, Huyen
Abstract (EN)
We aim to provide a Feynman-Kac type representation for Hamilton-Jacobi-Bellman equation, in terms of Forward Backward Stochastic Differential Equation (FBSDE) with a simulatable forward process. For this purpose, we introduce a class of BSDE where the jumps component of the solution is subject to a partial nonpositive constraint. Existence and approximation of a unique minimal solution is proved by a penalization method under mild assumptions. We then show how minimal solution to this BSDE class provides a new probabilistic representation for nonlinear integro-partial differential equations (IPDEs) of Hamilton-Jacobi-Bellman (HJB) type, when considering a regime switching forward SDE in a Markovian framework. Moreover, we state a dual formula of this BSDE minimal solution involving equivalent change of probability measures. This gives in particular an original representation for value functions of stochastic control problems including controlled diffusion coefficient.
Subjects / Keywords
nonlinear Integral PDE; Hamilton-Jacobi-Bellman equation; regime-switching jump-diffusion; onstrained BSDE; viscosity solutions; inf-convolution; semiconcave approximation; BSDE with jumps

Related items

Showing items related by title and author.

  • Thumbnail
    A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization 
    Pham, Huyên; Langrené, Nicolas; Kharroubi, Idris (2014) Article accepté pour publication ou publié
  • Thumbnail
    Time discretization and quantization methods for optimal multiple switching problem 
    Pham, Huyen; Kharroubi, Idris; Gassiat, Paul (2012) Article accepté pour publication ou publié
  • Thumbnail
    Hamilton-Jacobi-Bellman equations for the optimal control of a state equation with memory 
    Tahraoui, Rabah; Carlier, Guillaume (2010) Article accepté pour publication ou publié
  • Thumbnail
    Linear oblique derivative problems for the uniformly elliptic Hamilton-Jacobi-Bellman equation 
    Lions, Pierre-Louis; Trudinger, N.S. (1986) Article accepté pour publication ou publié
  • Thumbnail
    L^1-error estimate for numerical approximations of Hamilton-Jacobi-Bellman equations in dimension 1 
    Bokanowski, Olivier; Forcadel, Nicolas; Zidani, Hasnaa (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo