• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Bayes and empirical Bayes : Do they merge?

Scricciolo, Catia; Rousseau, Judith; Petrone, Sonia (2014), Bayes and empirical Bayes : Do they merge?, Biometrika, 101, 2, p. 285-302. http://dx.doi.org/10.1093/biomet/ast067

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00767467
Date
2014
Journal name
Biometrika
Volume
101
Number
2
Publisher
Oxford University Press
Pages
285-302
Publication identifier
http://dx.doi.org/10.1093/biomet/ast067
Metadata
Show full item record
Author(s)
Scricciolo, Catia
Rousseau, Judith
Petrone, Sonia
Abstract (EN)
Bayesian inference is attractive for its coherence and good frequentist properties. However, eliciting a honest prior may be difficult and a common practice is to take an empirical Bayes approach, using some empirical estimate of the prior hyperparameters. Despite not rigorous, the underlying idea is that, for sufficiently large sample size, empirical Bayes leads to similar inferential answers as a proper Bayesian inference. However, precise mathematical results seem missing. In this work, we give more rigorous results in terms of merging of Bayesian and empirical Bayesian posterior distributions. We study two notions of merging: Bayesian weak merging and frequentist merging in total variation. We also show that, under regularity conditions, empirical Bayes asymptotically gives an oracle selection of the prior hyperparameters. Examples include empirical Bayes density estimation with Dirichlet process mixtures.
Subjects / Keywords
Dirichlet process mixtures; Maximum marginal likelihood estimate; Frequentist strong merging; Bayesian weak merging; Consistency
JEL
C11 - Bayesian Analysis: General

Related items

Showing items related by title and author.

  • Thumbnail
    Empirical Bayes methods in classical and Bayesian inference 
    Scricciolo, Catia; Rousseau, Judith; Rizzelli, Stefano; Petrone, Sonia (2014) Article accepté pour publication ou publié
  • Thumbnail
    Posterior concentration rates for empirical Bayes procedures, with applications to Dirichlet Process mixtures 
    Donnet, Sophie; Rivoirard, Vincent; Rousseau, Judith; Scricciolo, Catia (2018) Article accepté pour publication ou publié
  • Thumbnail
    Posterior concentration rates for empirical Bayes procedures, with applications to Dirichlet Process mixtures. Supplementary material 
    Donnet, Sophie; Rivoirard, Vincent; Rousseau, Judith; Scricciolo, Catia (2014) Document de travail / Working paper
  • Thumbnail
    On Convergence Rates of Empirical Bayes Procedures 
    Donnet, Sophie; Rousseau, Judith; Rivoirard, Vincent; Scricciolo, Catia (2014) Communication / Conférence
  • Thumbnail
    On some aspects of the asymptotic properties of Bayesian approaches in nonparametric and semiparametric models 
    Scricciolo, Catia; Salomond, Jean-Bernard; Rousseau, Judith (2014-01-30) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo