Continuous invertibility and stable QML estimation of the EGARCH(1,1) model
Wintenberger, Olivier (2013), Continuous invertibility and stable QML estimation of the EGARCH(1,1) model, Scandinavian Journal of Statistics, 40, 4, p. 846-867. http://dx.doi.org/10.1111/sjos.12038
Type
Article accepté pour publication ou publiéLien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00751706Date
2013Nom de la revue
Scandinavian Journal of StatisticsVolume
40Numéro
4Éditeur
Wiley
Pages
846-867
Identifiant publication
Métadonnées
Afficher la notice complèteAuteur(s)
Wintenberger, OlivierRésumé (EN)
We introduce the notion of continuous invertibility on a compact set for volatility models driven by a Stochastic Recurrence Equation (SRE). We prove the strong consistency of the Quasi Maximum Likelihood Estimator (QMLE) when the optimization procedure is done on a continuously invertible domain. This approach gives for the first time the strong consistency of the QMLE used by Nelson in \cite{nelson:1991} for the EGARCH(1,1) model under explicit but non observable conditions. In practice, we propose to stabilize the QMLE by constraining the optimization procedure to an empirical continuously invertible domain. The new method, called Stable QMLE (SQMLE), is strongly consistent when the observations follow an invertible EGARCH(1,1) model. We also give the asymptotic normality of the SQMLE under additional minimal assumptions.Mots-clés
stochastic recurrence equation; exponential GARCH; asymptotic normality; strong consistency; quasi maximum likelihood; volatility models; Invertible modelsPublications associées
Affichage des éléments liés par titre et auteur.
-
Bartkiewicz, Katarzyna; Jakubowski, Adam; Mikosch, Thomas; Wintenberger, Olivier (2011) Article accepté pour publication ou publié
-
Wintenberger, Olivier; Alquier, Pierre (2009) Communication / Conférence
-
Cai, Sixiang; Wintenberger, Olivier (2011) Communication / Conférence
-
Zakoïan, Jean-Michel; Regnard, Nazim (2008) Document de travail / Working paper
-
Wintenberger, Olivier; Mikosch, Thomas (2014) Article accepté pour publication ou publié