Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces
Haspot, Boris (2011), Well-posedness in critical spaces for the system of compressible Navier-Stokes in larger spaces, Journal of Differential Equations, 251, 8, p. 2262-2295. http://dx.doi.org/10.1016/j.jde.2011.06.013
Type
Article accepté pour publication ou publiéDate
2011Journal name
Journal of Differential EquationsVolume
251Number
8Publisher
Elsevier
Pages
2262-2295
Publication identifier
Metadata
Show full item recordAuthor(s)
Haspot, BorisAbstract (EN)
This paper is dedicated to the study of viscous compressible barotropic fluids in dimension $N\geq2$. We address the question of well-posedness for {\it large} data having critical Besov regularity. Our result improves the analysis of R. Danchin in \cite{DW}, of Chen et al in \cite{C2} and of the author in \cite{H1, H2} inasmuch as we may take initial density in $B^{\NN}_{p,1}$ with $1\leq p<+\infty$. Our result relies on a new a priori estimate for the velocity, where we introduce a new unknown called \textit{effective velocity} to weaken one the coupling between the density and the velocity. In particular for the first time we obtain uniqueness without imposing hypothesis on the gradient of the density.Subjects / Keywords
critical spaces; fluids; Navier-Stokes equationsRelated items
Showing items related by title and author.
-
Haspot, Boris (2013) Article accepté pour publication ou publié
-
Haspot, Boris (2012) Article accepté pour publication ou publié
-
Haspot, Boris (2018) Article accepté pour publication ou publié
-
Haspot, Boris (2009) Document de travail / Working paper
-
Haspot, Boris (2016) Document de travail / Working paper