• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Nonlinear flows and rigidity results on compact manifolds

Loss, Michael; Esteban, Maria J.; Dolbeault, Jean (2014), Nonlinear flows and rigidity results on compact manifolds, Journal of Functional Analysis, 267, 5, p. 1338-1363. http://dx.doi.org/10.1016/j.jfa.2014.05.021

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00784887
Date
2014
Journal name
Journal of Functional Analysis
Volume
267
Number
5
Publisher
Elsevier
Pages
1338-1363
Publication identifier
http://dx.doi.org/10.1016/j.jfa.2014.05.021
Metadata
Show full item record
Author(s)
Loss, Michael
Esteban, Maria J. cc
Dolbeault, Jean cc
Abstract (EN)
This paper is devoted to rigidity results for some elliptic PDEs and related interpolation inequalities of Sobolev type on smooth compact connected Riemannian manifolds without boundaries. Rigidity means that the PDE has no other solution than the constant one at least when a parameter is in a certain range. This parameter can be used as an estimate for the best constant in the corresponding interpolation inequality. Our approach relies in a nonlinear flow of porous medium / fast diffusion type which gives a clear-cut interpretation of technical choices of exponents done in earlier works. We also establish two integral criteria for rigidity that improve upon known, pointwise conditions, and hold for general manifolds without positivity conditions on the curvature. Using the flow, we are also able to discuss the optimality of the corresponding constant in the interpolation inequalities.
Subjects / Keywords
optimal constant; Gagliardo-Nirenberg inequalities; interpolation; Poincaré inequality; Sobolev inequality; nonlinear diffusions; rigidity; semilinear elliptic equations; Ricci tensor; Laplace-Beltrami operator; Compact Riemannian manifold

Related items

Showing items related by title and author.

  • Thumbnail
    Spectral properties of Schrödinger operators on compact manifolds: rigidity, flows, interpolation and spectral estimates 
    Loss, Michael; Laptev, Ari; Esteban, Maria J.; Dolbeault, Jean (2013) Article accepté pour publication ou publié
  • Thumbnail
    Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2016) Article accepté pour publication ou publié
  • Thumbnail
    Rigidity results for semilinear elliptic equations with exponential nonlinearities and Moser-Trudinger-Onofri inequalities on two-dimensional Riemannian manifolds 
    Dolbeault, Jean; Esteban, Maria J.; Jankowiak, Gaspard (2015) Article accepté pour publication ou publié
  • Thumbnail
    Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2018) Communication / Conférence
  • Thumbnail
    Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization 
    Dolbeault, Jean; Esteban, Maria J.; Loss, Michael (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo