On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model
Charve, Frédéric; Haspot, Boris (2013), On a Lagrangian method for the convergence from a non-local to a local Korteweg capillary fluid model, Journal of Functional Analysis, 265, 7, p. 1264-1323. http://dx.doi.org/10.1016/j.jfa.2013.05.042
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00787265Date
2013Journal name
Journal of Functional AnalysisVolume
265Number
7Publisher
Elsevier; Academic Press
Pages
1264-1323
Publication identifier
Metadata
Show full item recordAbstract (EN)
In the present article we are interested in further investigations for the barotropic compressible Navier-Stokes system endowed with a non-local capillarity we studied in [7]. Thanks to an accurate study of the associated linear system using a Lagrangian change of coordinates, we provide more precise energy estimates in terms of hybrid Besov spaces naturally depending on a threshold frequency ( which is determined in function of the physical parameter) distinguishing the low and the high regimes. It allows us in particular to prove the convergence of the solutions from the non-local to the local Korteweg system. Another mathematical interest of this article is the study of the effect of the Lagrangian change on the non-local capillary term.Subjects / Keywords
Besov spaces; Capillary models; Lagrangian flow; Compressible Navier–Stokes in critical spacesRelated items
Showing items related by title and author.
-
Haspot, Boris; Charve, Frédéric (2011) Article accepté pour publication ou publié
-
Haspot, Boris; Charve, Frédéric (2013) Article accepté pour publication ou publié
-
Haspot, Boris (2010) Article accepté pour publication ou publié
-
Haspot, Boris; Charve, Frédéric (2012) Article accepté pour publication ou publié
-
Haspot, Boris (2011) Article accepté pour publication ou publié