Risk measures for processes and BSDEs
dc.contributor.author | Réveillac, Anthony
HAL ID: 745074 | |
dc.contributor.author | Penner, Irina | |
dc.date.accessioned | 2013-04-18T13:51:14Z | |
dc.date.available | 2013-04-18T13:51:14Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/11227 | |
dc.language.iso | en | en |
dc.subject | BSDEs | en |
dc.subject | Decomposition of optional measures | en |
dc.subject | Cash subadditivity | en |
dc.subject | Model ambiguity | en |
dc.subject | Discounting ambiguity | en |
dc.subject | Convex risk measures for processes | en |
dc.subject.ddc | 519 | en |
dc.subject.classificationjel | D8 | en |
dc.subject.classificationjel | D81 | en |
dc.title | Risk measures for processes and BSDEs | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | The paper analyzes risk assessment for cash flows in continuous time using the notion of convex risk measures for processes. By combining a decomposition result for optional measures, and a dual representation of a convex risk measure for bounded \cd processes, we show that this framework provides a systematic approach to the both issues of model ambiguity, and uncertainty about the time value of money. We also establish a link between risk measures for processes and BSDEs. | en |
dc.relation.isversionofjnlname | Finance and Stochastics | |
dc.relation.isversionofjnlvol | 19 | |
dc.relation.isversionofjnlissue | 1 | |
dc.relation.isversionofjnldate | 2015 | |
dc.relation.isversionofjnlpages | 23-66 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00780-014-0243-x | |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00814702 | en |
dc.relation.isversionofjnlpublisher | Springer | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.description.submitted | non | en |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |