The CRT is the scaling limit of random dissections
Curien, Nicolas; Haas, Bénédicte; Kortchemski, Igor (2015), The CRT is the scaling limit of random dissections, Random Structures & Algorithms, 47, 2, p. 304-327. 10.1002/rsa.20554
Type
Article accepté pour publication ou publiéExternal document link
https://arxiv.org/abs/1305.3534v2Date
2015Journal name
Random Structures & AlgorithmsVolume
47Number
2Publisher
J. Wiley
Pages
304-327
Publication identifier
Metadata
Show full item recordAuthor(s)
Curien, NicolasHaas, Bénédicte
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Kortchemski, Igor
Abstract (EN)
We study the graph structure of large random dissections of polygons sampled according to Boltzmann weights, which encompasses the case of uniform dissections or uniform $p$-angulations. As their number of vertices $n$ goes to infinity, we show that these random graphs, rescaled by $n^{-1/2}$, converge in the Gromov--Hausdorff sense towards a multiple of Aldous' Brownian tree when the weights decrease sufficiently fast. The scaling constant depends on the Boltzmann weights in a rather amusing and intriguing way, and is computed by making use of a Markov chain which compares the length of geodesics in dissections with the length of geodesics in their dual trees.Subjects / Keywords
Brownian Continuum Random Tree; Gromov–Hausdorff topology; Random dissections; Galton–Watson trees; scaling limitsRelated items
Showing items related by title and author.
-
Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
-
Haas, Bénédicte; Curien, Nicolas (2013) Article accepté pour publication ou publié
-
Haas, Bénédicte; Stephenson, Robin (2015) Article accepté pour publication ou publié
-
Miermont, Grégory; Haas, Bénédicte (2011) Article accepté pour publication ou publié
-
Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié