• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The CRT is the scaling limit of random dissections

Curien, Nicolas; Haas, Bénédicte; Kortchemski, Igor (2015), The CRT is the scaling limit of random dissections, Random Structures & Algorithms, 47, 2, p. 304-327. 10.1002/rsa.20554

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1305.3534v2
Date
2015
Journal name
Random Structures & Algorithms
Volume
47
Number
2
Publisher
J. Wiley
Pages
304-327
Publication identifier
10.1002/rsa.20554
Metadata
Show full item record
Author(s)
Curien, Nicolas

Haas, Bénédicte
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Kortchemski, Igor
Abstract (EN)
We study the graph structure of large random dissections of polygons sampled according to Boltzmann weights, which encompasses the case of uniform dissections or uniform $p$-angulations. As their number of vertices $n$ goes to infinity, we show that these random graphs, rescaled by $n^{-1/2}$, converge in the Gromov--Hausdorff sense towards a multiple of Aldous' Brownian tree when the weights decrease sufficiently fast. The scaling constant depends on the Boltzmann weights in a rather amusing and intriguing way, and is computed by making use of a Markov chain which compares the length of geodesics in dissections with the length of geodesics in their dual trees.
Subjects / Keywords
Brownian Continuum Random Tree; Gromov–Hausdorff topology; Random dissections; Galton–Watson trees; scaling limits

Related items

Showing items related by title and author.

  • Thumbnail
    Scaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees 
    Haas, Bénédicte; Miermont, Grégory (2012) Article accepté pour publication ou publié
  • Thumbnail
    The stable trees are nested 
    Haas, Bénédicte; Curien, Nicolas (2013) Article accepté pour publication ou publié
  • Thumbnail
    Scaling limits of k-ary growing trees 
    Haas, Bénédicte; Stephenson, Robin (2015) Article accepté pour publication ou publié
  • Thumbnail
    Self-similar scaling limits of non-increasing Markov chains 
    Miermont, Grégory; Haas, Bénédicte (2011) Article accepté pour publication ou publié
  • Thumbnail
    The genealogy of self-similar fragmentations with negative index as a continuum random tree 
    Haas, Bénédicte; Miermont, Grégory (2004) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo