• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail

A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweights: Application to robust clustering

Wraith, Darren; Forbes, Florence (2014), A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweights: Application to robust clustering, Statistics and Computing, 24, 6, p. 971-984. http://dx.doi.org/10.1007/s11222-013-9414-4

View/Open
Rev2-ForHAL.pdf (2.064Mb)
Type
Article accepté pour publication ou publié
External document link
http://hal.inria.fr/hal-00823451
Date
2014
Journal name
Statistics and Computing
Volume
24
Number
6
Publisher
Springer
Pages
971-984
Publication identifier
http://dx.doi.org/10.1007/s11222-013-9414-4
Metadata
Show full item record
Author(s)
Wraith, Darren
Forbes, Florence
Abstract (EN)
We propose a family of multivariate heavy-tailed distributions that allow variable marginal amounts of tailweight. The originality comes from introducing multidimensional instead of univariate scale variables for the mixture of scaled Gaussian family of distributions. In contrast to most existing approaches, the derived distributions can account for a variety of shapes and have a simple tractable form with a closed-form probability density function whatever the dimension. We examine a number of properties of these distributions and illustrate them in the particular case of Pearson type VII and ttails. For these latter cases, we provide maximum likelihood estimation of the parameters and illustrate their modelling flexibility on simulated and real data clustering example.
Subjects / Keywords
Outlier detection; Multivariate generalized t -distribution; Gaussian scale mixture; EM algorithm; Covariance matrix decomposition

Related items

Showing items related by title and author.

  • Thumbnail
    Using informative priors in the estimation of mixtures over time with application to aerosol particle size distributions 
    Hussein, Tareq; Rousseau, Judith; Alston, Clair; Mengersen, Kerrie; Wraith, Darren (2014) Article accepté pour publication ou publié
  • Thumbnail
    The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains 
    Wintenberger, Olivier; Mikosch, Thomas (2014) Article accepté pour publication ou publié
  • Thumbnail
    Lasso in infinite dimension : application to variable selection in functional multivariate linear regression 
    Roche, Angelina (2022) Document de travail / Working paper
  • Thumbnail
    Lasso in infinite dimension: application to variable selection in functional multivariate linear regression 
    Roche, Angelina (2023) Document de travail / Working paper
  • Thumbnail
    Bayesian model comparison in cosmology with Population Monte Carlo 
    Kilbinger, Martin; Wraith, Darren; Robert, Christian P.; Benabed, Karim; Cappé, Olivier; Cardoso, Jean-François; Fort, Gersende; Prunet, Simon; Bouchet, François R. (2010) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo