
Scaling Limits of Additive Functionals of Interacting Particle Systems
Gonçalves, Patricia; Jara, Milton (2013), Scaling Limits of Additive Functionals of Interacting Particle Systems, Communications on Pure and Applied Mathematics, 66, 5, p. 649-677. http://dx.doi.org/10.1002/cpa.21441
View/ Open
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/1103.3722v4Date
2013Journal name
Communications on Pure and Applied MathematicsVolume
66Number
5Publisher
Wiley
Pages
649-677
Publication identifier
Metadata
Show full item recordAbstract (EN)
Using the renormalization method introduced by the authors, we prove what we call the local Boltzmann-Gibbs principle for conservative, stationary interacting particle systems in dimension d = 1. As applications of this result, we obtain various scaling limits of additive functionals of particle systems, like the occupation time of a given site or extensive additive fields of the dynamics. As a by-product of these results, we also construct a novel process, related to the stationary solution of the stochastic Burgers equation.Subjects / Keywords
stochastic Burgers equation; Boltzmann-Gibbs principleRelated items
Showing items related by title and author.
-
Gonçalves, Patricia; Jara, Milton Article accepté pour publication ou publié
-
Gonçalves, Patricia; Jara, Milton (2014) Article accepté pour publication ou publié
-
Gonçalves, Patricia; Jara, Milton (2008) Article accepté pour publication ou publié
-
Olla, Stefano; Komorowski, Tomasz; Jara, Milton (2009) Article accepté pour publication ou publié
-
Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps Jara, Milton Article accepté pour publication ou publié