• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Complexity of trails, paths and circuits in arc-colored digraphs

Gourvès, Laurent; Lyra, Adria; Martinhon, Carlos A.; Monnot, Jérôme (2013), Complexity of trails, paths and circuits in arc-colored digraphs, Discrete Applied Mathematics, 161, 6, p. 819-828. 10.1016/j.dam.2012.10.025

Type
Article accepté pour publication ou publié
Date
2013
Journal name
Discrete Applied Mathematics
Volume
161
Number
6
Publisher
Elsevier
Pages
819-828
Publication identifier
10.1016/j.dam.2012.10.025
Metadata
Show full item record
Author(s)
Gourvès, Laurent
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lyra, Adria
Universidade Federal Rural do Rio de Janeiro [UFRRJ]
Martinhon, Carlos A.

Monnot, Jérôme cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
We deal with different algorithmic questions regarding properly arc-colored s–ts–t trails, paths and circuits in arc-colored digraphs. Given an arc-colored digraph DcDc with c≥2c≥2 colors, we show that the problem of determining the maximum number of arc disjoint properly arc-colored s–ts–t trails can be solved in polynomial time. Surprisingly, we prove that the determination of a properly arc-colored s–ts–t path is NP-complete even for planar digraphs containing no properly arc-colored circuits and c=Ω(n)c=Ω(n), where nn denotes the number of vertices in DcDc. If the digraph is an arc-colored tournament, we show that deciding whether it contains a properly arc-colored circuit passing through a given vertex xx (resp., properly arc-colored Hamiltonian s–ts–t path) is NP-complete for c≥2c≥2. As a consequence, we solve a weak version of an open problem posed in Gutin et al. (1998) [23], whose objective is to determine whether a 22-arc-colored tournament contains a properly arc-colored circuit.
Subjects / Keywords
Properly arc-colored paths/trails and circuits; Arc-colored digraphs; Hamiltonian directed path; Arc-colored tournaments; Polynomial algorithms; NP-completeness

Related items

Showing items related by title and author.

  • Thumbnail
    Complexity of Paths, Trails and Circuits in Arc-Colored Digraphs 
    Gourvès, Laurent; Lyra, Adria; Martinhon, Carlos A.; Monnot, Jérôme (2010) Communication / Conférence
  • Thumbnail
    On paths, trails and closed trails in edge-colored graphs 
    Gourvès, Laurent; Lyra, Adria; Martinhon, Carlos A.; Monnot, Jérôme (2012) Article accepté pour publication ou publié
  • Thumbnail
    On s-t paths and trails in edge-colored graphs 
    Gourvès, Laurent; Martinhon, Carlos A.; Monnot, Jérôme; Adria, Lyra; Protti, Fabio (2009) Article accepté pour publication ou publié
  • Thumbnail
    The minimum reload s–t path, trail and walk problems 
    Gourvès, Laurent; Lyra, Adria; Martinhon, Carlos A.; Monnot, Jérôme (2010) Article accepté pour publication ou publié
  • Thumbnail
    The Minimum Reload s-t Path/Trail/Walk Problems 
    Gourvès, Laurent; Lyra, Adria; Martinhon, Carlos A.; Monnot, Jérôme (2009) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo