• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Geodesic voting for the automatic extraction of tree structures. Methods and applications

Cohen, Laurent D.; Rouchdy, Youssef (2013), Geodesic voting for the automatic extraction of tree structures. Methods and applications, Computer Vision and Image Understanding, 117, 10, p. 1453–1467. http://dx.doi.org/10.1016/j.cviu.2013.06.001

Type
Article accepté pour publication ou publié
Date
2013
Nom de la revue
Computer Vision and Image Understanding; Computer Vision and Image Understanding
Volume
117
Numéro
10
Éditeur
Elsevier
Pages
1453–1467
Identifiant publication
http://dx.doi.org/10.1016/j.cviu.2013.06.001
Métadonnées
Afficher la notice complète
Auteur(s)
Cohen, Laurent D.
Rouchdy, Youssef
Résumé (EN)
This paper presents new methods to segment thin tree structures, which are, for example present in microglia extensions and cardiac or neuronal blood vessels. Many authors have used minimal cost paths, or geodesics relative to a local weighting potential P, to find a vessel pathway between two end points. We utilize a set of such geodesic paths to find a tubular tree structure by seeking minimal interaction. We introduce a new idea that we call Geodesic Voting or Geodesic Density. The approach consists of computing geodesics from a set of end points scattered in the image which flow toward a given source point. The target structure corresponds to image points with a high geodesic density. The ”Geodesic density” is defined at each pixel of the image as the number of geodesics that pass over this pixel. The potential P is defined in such way that it takes low values along the tree structure, therefore geodesics will migrate toward this structure thereby yielding a high geodesic density. We further adapt these methods to segment complex tree structures in a noisy medium and apply them to segment microglia extensions from confocal microscope images as well as vessels.
Mots-clés
Tree Structure Segmentation; Minimal Paths; Level Set; Fast Marching; Geodesic Voting

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    The shading zone problem in geodesic voting and its solutions for the segmentation of tree structures. Application to the segmentation of Microglia extensions 
    Cohen, Laurent D.; Rouchdy, Youssef (2009) Communication / Conférence
  • Vignette de prévisualisation
    Image Segmentation by Geodesic Voting. Application to the Extraction of Tree Structures from Confocal Microscope Images 
    Cohen, Laurent D.; Rouchdy, Youssef (2008) Communication / Conférence
  • Vignette de prévisualisation
    A geodesic voting method for the segmentation of tubular tree and centerlines 
    Rouchdy, Youssef; Cohen, Laurent D. (2011) Communication / Conférence
  • Vignette de prévisualisation
    A Geodesic Voting Shape Prior to Constrain the Level Set Evolution for the Segmentation of Tubular Trees 
    Rouchdy, Youssef; Cohen, Laurent D. (2012) Communication / Conférence
  • Vignette de prévisualisation
    Geodesic voting methods: overview, extensions and application to blood vessel segmentation 
    Cohen, Laurent D.; Rouchdy, Youssef (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo