Quantitative stochastic homogenization of elliptic equations in nondivergence form
Armstrong, Scott N.; Smart, Charles K. (2014), Quantitative stochastic homogenization of elliptic equations in nondivergence form, Archive for Rational Mechanics and Analysis, 214, 3, p. 867-911. http://dx.doi.org/10.1007/s00205-014-0765-6
Type
Article accepté pour publication ou publiéExternal document link
http://fr.arxiv.org/abs/1306.5340Date
2014Journal name
Archive for Rational Mechanics and AnalysisVolume
214Number
3Publisher
Springer
Pages
867-911
Publication identifier
Metadata
Show full item recordAbstract (EN)
We introduce a new method for studying stochastic homogenization of elliptic equations in nondivergence form. The main application is an algebraic error estimate, asserting that deviations from the homogenized limit are at most proportional to a power of the microscopic length scale, assuming a finite range of dependence. The results are new even for linear equations.Subjects / Keywords
stochastic homogenization; error estimate; fully nonlinear equationRelated items
Showing items related by title and author.
-
Armstrong, Scott N.; Lin, Jessica (2017) Article accepté pour publication ou publié
-
Smart, Charles K.; Armstrong, Scott N. (2014) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Smart, Charles K. (2016) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Armstrong, Scott N. (2015) Article accepté pour publication ou publié
-
Smart, Charles K.; Armstrong, Scott N. (2014) Article accepté pour publication ou publié