The lattice structure of the S-Lorenz core
Iehlé, Vincent (2015), The lattice structure of the S-Lorenz core, Theory and Decision, 78, 1, p. 141-151. http://dx.doi.org/10.1007/s11238-014-9415-6
Type
Article accepté pour publication ou publiéExternal document link
http://halshs.archives-ouvertes.fr/halshs-00846826Date
2015Journal name
Theory and DecisionVolume
78Number
1Publisher
Springer
Pages
141-151
Publication identifier
Metadata
Show full item recordAbstract (EN)
For any TU game and any ranking of players, the set of all preimputations compatible with the ranking, equipped with the Lorenz order, is a bounded join semi-lattice. Furthermore, the set admits as sublattice the S-Lorenz core intersected with the region compatible with the ranking. This result uncovers a new property about the structure of the S-Lorenz core. As immediate corollaries, we obtain complementary results to the findings of Dutta and Ray (Games Econ Behav, 3(4):403–422, 1991), by showing that any S-constrained egalitarian allocation is the (unique) Lorenz greatest element of the S-Lorenz core on the rank-preserving region the allocation belongs to. Besides, our results suggest that the comparison between W- and S-constrained egalitarian allocations is more puzzling than what is usually admitted in the literature.Subjects / Keywords
lattice; constrained egalitarian allocation; cooperative game; Lorenz-core; Lorenz criterionRelated items
Showing items related by title and author.
-
Iehlé, Vincent (2007) Article accepté pour publication ou publié
-
Iehlé, Vincent (2004) Document de travail / Working paper
-
Iehlé, Vincent (2004) Article accepté pour publication ou publié
-
Bonnisseau, Jean-Marc; Iehlé, Vincent (2007) Article accepté pour publication ou publié
-
Bohi, Amine; Prandi, Dario; Guis, Vincente; Bouchara, Frédéric; Gauthier, Jean-Paul (2016) Article accepté pour publication ou publié