• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The lattice structure of the S-Lorenz core

Iehlé, Vincent (2015), The lattice structure of the S-Lorenz core, Theory and Decision, 78, 1, p. 141-151. http://dx.doi.org/10.1007/s11238-014-9415-6

Type
Article accepté pour publication ou publié
External document link
http://halshs.archives-ouvertes.fr/halshs-00846826
Date
2015
Journal name
Theory and Decision
Volume
78
Number
1
Publisher
Springer
Pages
141-151
Publication identifier
http://dx.doi.org/10.1007/s11238-014-9415-6
Metadata
Show full item record
Author(s)
Iehlé, Vincent cc
Abstract (EN)
For any TU game and any ranking of players, the set of all preimputations compatible with the ranking, equipped with the Lorenz order, is a bounded join semi-lattice. Furthermore, the set admits as sublattice the S-Lorenz core intersected with the region compatible with the ranking. This result uncovers a new property about the structure of the S-Lorenz core. As immediate corollaries, we obtain complementary results to the findings of Dutta and Ray (Games Econ Behav, 3(4):403–422, 1991), by showing that any S-constrained egalitarian allocation is the (unique) Lorenz greatest element of the S-Lorenz core on the rank-preserving region the allocation belongs to. Besides, our results suggest that the comparison between W- and S-constrained egalitarian allocations is more puzzling than what is usually admitted in the literature.
Subjects / Keywords
lattice; constrained egalitarian allocation; cooperative game; Lorenz-core; Lorenz criterion
JEL
D63 - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
C71 - Cooperative Games

Related items

Showing items related by title and author.

  • Thumbnail
    The Core-Partition of Hedonic Games 
    Iehlé, Vincent (2007) Article accepté pour publication ou publié
  • Thumbnail
    Stable pricing in monopoly and equilibrium-core of cost games. 
    Iehlé, Vincent (2004) Document de travail / Working paper
  • Thumbnail
    Transfer Rate Rules and Core Selections in NTU Games 
    Iehlé, Vincent (2004) Article accepté pour publication ou publié
  • Thumbnail
    Payoff-dependant Balancedness and Cores 
    Bonnisseau, Jean-Marc; Iehlé, Vincent (2007) Article accepté pour publication ou publié
  • Thumbnail
    Fourier Descriptors Based on the Structure of the Human Primary Visual Cortex with Applications to Object Recognition 
    Bohi, Amine; Prandi, Dario; Guis, Vincente; Bouchara, Frédéric; Gauthier, Jean-Paul (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo