SAR-based Terrain Classification using Weakly Supervised Hierarchical Markov Aspect Models
Xia, Gui-Song; Triggs, Bill; Dai, Dengxin; Yang, Wen (2012), SAR-based Terrain Classification using Weakly Supervised Hierarchical Markov Aspect Models, IEEE Transactions on Image Processing, 21, 9, p. 4232-4243. http://dx.doi.org/10.1109/TIP.2012.2199127
Type
Article accepté pour publication ou publiéDate
2012Journal name
IEEE Transactions on Image ProcessingVolume
21Number
9Publisher
IEEE
Pages
4232-4243
Publication identifier
Metadata
Show full item recordAbstract (EN)
We introduce the hierarchical Markov aspect model (HMAM), a computationally efficient graphical model for densely labeling large remote sensing images with their underlying terrain classes. HMAM resolves local ambiguities efficiently by combining the benefits of quadtree representations and aspect models--the former incorporate multiscale visual features and hierarchical smoothing to provide improved local label consistency, while the latter sharpen the labelings by focusing them on the classes that are most relevant for the broader local image context. The full HMAM model takes a grid of local hierarchical Markov quadtrees over image patches and augments it by incorporating a probabilistic latent semantic analysis aspect model over a larger local image tile at each level of the quadtree forest. Bag-of-word visual features are extracted for each level and patch, and given these, the parent-child transition probabilities from the quadtree and the label probabilities from the tile-level aspect models, an efficient forwards-backwards inference pass allows local posteriors for the class labels to be obtained for each patch. Variational expectation-maximization is then used to train the complete model from either pixel-level or tile-keyword-level labelings. Experiments on a complete TerraSAR-X synthetic aperture radar terrain map with pixel-level ground truth show that HMAM is both accurate and efficient, providing significantly better results than comparable single-scale aspect models with only a modest increase in training and test complexity. Keyword-level training greatly reduces the cost of providing training data with little loss of accuracy relative to pixel-level training.Subjects / Keywords
synthetic aperture radar; scene labeling; probabilistic latent semantic analysis (PLSA); Hierarchical Markov aspect model (HMAM)Related items
Showing items related by title and author.
-
Liu, Gang; Yang, Wen; Xia, Gui-Song; Shao, Wen (2012) Communication / Conférence
-
Yang, Wen; Liu, Y.; Xia, Gui-Song; Xu, X. (2012) Article accepté pour publication ou publié
-
Aujol, Jean-François; Peyré, Gabriel; Xia, Gui-Song; Ferradans, Sira (2012) Document de travail / Working paper
-
Aujol, Jean-François; Peyré, Gabriel; Ferradans, Sira; Xia, Gui-Song (2014) Article accepté pour publication ou publié
-
Yuan, Fei; Xia, Gui-Song; Sahbi, Hichem; Prinet, Véronique (2012) Article accepté pour publication ou publié