Complexity Results for the Empire Problem in Collection of Stars
Couëtoux, Basile; Monnot, Jérôme; Toubaline, Sónia (2012), Complexity Results for the Empire Problem in Collection of Stars, in Lin, Guohui, Combinatorial Optimization and Applications 6th International Conference, COCOA 2012, Banff, AB, Canada, August 5-9, 2012, Proceedings, Springer : Berlin Heidelberg, p. 73-82
Type
Communication / ConférenceDate
2012Conference title
6th International Conference on Combinatorial Optimization and Applications, COCOA 2012Conference date
2012-08Conference city
BanffConference country
CanadaBook title
Combinatorial Optimization and Applications 6th International Conference, COCOA 2012, Banff, AB, Canada, August 5-9, 2012, ProceedingsBook author
Lin, GuohuiPublisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-642-31769-9
Pages
73-82
Metadata
Show full item recordAuthor(s)
Couëtoux, BasileMonnot, Jérôme

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Toubaline, Sónia
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
In this paper, we study the Empire Problem, a generalization of the coloring problem to maps on two-dimensional compact surface whose genus is positive. Given a planar graph with a certain partition of the vertices into blocks of size r, for a given integer r, the problem consists of deciding if s colors are sufficient to color the vertices of the graph such that vertices of the same block have the same color and vertices of two adjacent blocks have different colors. In this paper, we prove that given a 5-regular graph, deciding if there exists a 4-coloration is NP-complete. Also, we propose conditional NP-completeness results for the Empire Problem when the graph is a collection of stars. A star is a graph isomorphic to K 1,q for some q ≥ 1. More exactly, we prove that for r ≥ 2, if the (2r − 1)-coloring problem in 2r-regular connected graphs is NP-complete, then the Empire Problem for blocks of size r + 1 and s = 2r − 1 is NP-complete for forests of K 1, r . Moreover, we prove that this result holds for r = 2. Also for r ≥ 3, if the r-coloring problem in (r + 1)-regular graphs is NP-complete, then the Empire Problem for blocks of size r + 1 and s = r is NP-complete for forests of K 1, 1 = K 2, i.e., forest of edges. Additionally, we prove that this result is valid for r = 2 and r = 3. Finally, we prove that these results are the best possible, that is for smallest value of s or r, the Empire Problem in these classes of graphs becomes polynomial.Subjects / Keywords
Coloring in regular graphs; Empire Problem; Forests of stars; NP-completenessRelated items
Showing items related by title and author.
-
Couëtoux, Basile; Gourvès, Laurent; Monnot, Jérôme; Telelis, Orestis (2010) Article accepté pour publication ou publié
-
Toubaline, Sónia; D’Ambrosio, Claudia; Liberti, Leo; Poirion, Pierre-Louis; Schieber, Baruch; Shachnai, Hadas (2018) Article accepté pour publication ou publié
-
Monnot, Jérôme; Gourvès, Laurent; Escoffier, Bruno (2010) Article accepté pour publication ou publié
-
Escoffier, Bruno; Gourvès, Laurent; Monnot, Jérôme (2007) Document de travail / Working paper
-
Bazgan, Cristina; Couëtoux, Basile; Tuza, Zsolt (2011) Article accepté pour publication ou publié