
The Robust Set Problem: Parameterized Complexity and Approximation
Bazgan, Cristina; Chopin, Morgan (2012), The Robust Set Problem: Parameterized Complexity and Approximation, in Widmayer, Peter, Mathematical Foundations of Computer Science 2012 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012, Proceedings, Springer : Berlin Heidelberg, p. 136-147. 10.1007/978-3-642-32589-2_15
View/ Open
Type
Communication / ConférenceDate
2012Conference title
37th International Symposium on Mathematical Foundations of Computer Science , MFCS 2012Conference date
2012-08Conference city
BratislavaConference country
SlovakiaBook title
Mathematical Foundations of Computer Science 2012 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012, ProceedingsBook author
Widmayer, PeterPublisher
Springer
Published in
Berlin Heidelberg
ISBN
978-3-642-32588-5
Pages
136-147
Publication identifier
Metadata
Show full item recordAuthor(s)
Bazgan, CristinaLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Chopin, Morgan
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
In this paper, we introduce the Robust Set problem: given a graph G = (V,E), a threshold function t:V → N and an integer k, find a subset of vertices V′ ⊆ V of size at least k such that every vertex v in G has less than t(v) neighbors in V′. This problem occurs in the context of the spread of undesirable agents through a network (virus, ideas, fire, …). Informally speaking, the problem asks to find the largest subset of vertices with the property that if anything bad happens in it then this will have no consequences on the remaining graph. The threshold t(v) of a vertex v represents its reliability regarding its neighborhood; that is, how many neighbors can be infected before v gets himself infected.We study in this paper the parameterized complexity of Robust Set and the approximation of the associated maximization problem. When the parameter is k, we show that this problem is W[2]-complete in general and W[1]-complete if all thresholds are constant bounded. Moreover, we prove that, if P ≠ NP, the maximization version is not n 1 − ε - approximable for any ε > 0 even when all thresholds are at most two. When each threshold is equal to the degree of the vertex, we show that k -Robust Set is fixed-parameter tractable for parameter k and the maximization version is APX-complete. We give a polynomial-time algorithm for graphs of bounded treewidth and a PTAS for planar graphs. Finally, we show that the parametric dual problem (n − k)-Robust Set is fixed-parameter tractable for a large family of threshold functions.Subjects / Keywords
Robust setRelated items
Showing items related by title and author.
-
Bazgan, Cristina; Chopin, Morgan; Fellows, Michael R. (2011) Communication / Conférence
-
Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Communication / Conférence
-
Bazgan, Cristina; Chopin, Morgan; Nichterlein, André; Sikora, Florian (2014) Article accepté pour publication ou publié
-
Problèmes d'optimisation avec propagation dans les graphes : complexité paramétrée et approximation Chopin, Morgan (2013-07) Thèse
-
Bazgan, Cristina; Chopin, Morgan; Cygan, Marek; Fellows, Michael R.; Fomin, Fedor V.; van Leeuwen, Erik Jan (2014) Article accepté pour publication ou publié