• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Local Matching Indicators for Transport Problems with Concave Costs

Delon, Julie; Salomon, Julien; Sobolevski, Andrei (2012), Local Matching Indicators for Transport Problems with Concave Costs, SIAM Journal on Discrete Mathematics, 26, 2, p. 801-827. http://dx.doi.org/10.1137/110823304

Type
Article accepté pour publication ou publié
External document link
http://arxiv.org/abs/1102.1795v2
Date
2012
Journal name
SIAM Journal on Discrete Mathematics
Volume
26
Number
2
Publisher
SIAM
Pages
801-827
Publication identifier
http://dx.doi.org/10.1137/110823304
Metadata
Show full item record
Author(s)
Delon, Julie
Laboratoire Traitement et Communication de l'Information [LTCI]
Salomon, Julien
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Sobolevski, Andrei
Abstract (EN)
In this paper, we introduce a class of local indicators that enable us to compute efficiently optimal transport plans associated with arbitrary weighted distributions of $N$ demands and $M$ supplies in $\mathbb{R}$ in the case where the cost function is concave. Indeed, whereas this problem can be solved linearly when the cost is a convex function of the distance on the line (or more generally when the cost matrix between points is a Monge matrix), to the best of our knowledge no simple solution has been proposed for concave costs, which are more realistic in many applications, especially in economic situations. The problem we consider may be unbalanced, in the sense that the weight of all the supplies might be larger than the weight of all the demands. We show how to use the local indicators hierarchically to solve the transportation problem for concave costs on the line.
Subjects / Keywords
optimal transport; assignment problems; concave costs; local matching indicators

Related items

Showing items related by title and author.

  • Thumbnail
    Local matching indicators for concave transport costs 
    Sobolevski, Andrei; Salomon, Julien; Delon, Julie (2010) Article accepté pour publication ou publié
  • Thumbnail
    Fast Transport Optimization for Monge Costs on the Circle 
    Delon, Julie; Salomon, Julien; Sobolevski, Andrei (2010) Article accepté pour publication ou publié
  • Thumbnail
    Minimum-weight perfect matching for non-intrinsic distances on the line 
    Delon, Julie; Salomon, Julien; Sobolevski, Andrei (2012) Article accepté pour publication ou publié
  • Thumbnail
    A monotonic method for solving nonlinear optimal control problems with concave dependence on the state 
    Salomon, Julien; Turinici, Gabriel (2011) Article accepté pour publication ou publié
  • Thumbnail
    Regularization of transportation maps for color and contrast transfer 
    Rabin, Julien; Delon, Julie; Gousseau, Yann (2010) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo