• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sampling High-Dimensional Gaussian Distributions for General Linear Inverse Problems

Orieux, François; Féron, Olivier; Giovannelli, Jean-François (2012), Sampling High-Dimensional Gaussian Distributions for General Linear Inverse Problems, IEEE Signal Processing Letters, 19, 5, p. 251-254. http://dx.doi.org/10.1109/LSP.2012.2189104

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00779449
Date
2012
Journal name
IEEE Signal Processing Letters
Volume
19
Number
5
Publisher
IEEE
Pages
251-254
Publication identifier
http://dx.doi.org/10.1109/LSP.2012.2189104
Metadata
Show full item record
Author(s)
Orieux, François cc
Féron, Olivier
Giovannelli, Jean-François
Abstract (EN)
This paper is devoted to the problem of sampling Gaussian distributions in high dimension. Solutions exist for two specific structures of inverse covariance: sparse and circulant. The proposed algorithm is valid in a more general case especially as it emerges in linear inverse problems as well as in some hierarchical or latent Gaussian models. It relies on a perturbation-optimization principle: adequate stochastic perturbation of a criterion and optimization of the perturbed criterion. It is proved that the criterion optimizer is a sample of the target distribution. The main motivation is in inverse problems related to general (nonconvolutive) linear observation models and their solution in a Bayesian framework implemented through sampling algorithms when existing samplers are infeasible. It finds a direct application in myopic/unsupervised inversion methods as well as in some non-Gaussian inversion methods. An illustration focused on hyperparameter estimation for super-resolution method shows the interest and the feasibility of the proposed algorithm.
Subjects / Keywords
Stochastic sampling; high-dimensional sampling; inverse problem; Bayesian strategy; unsupervised; myopic; semi-blind

Related items

Showing items related by title and author.

  • Thumbnail
    Monte Carlo methods for sampling high-dimensional binary vectors 
    Schäfer, Christian (2012-11) Thèse
  • Thumbnail
    Forecasting mortality rate improvements with a high-dimensional VAR 
    Guibert, Quentin; Lopez, Olivier; Piette, Pierrick (2019) Article accepté pour publication ou publié
  • Thumbnail
    Rank penalized estimators for high-dimensional matrices 
    Klopp, Olga (2011) Article accepté pour publication ou publié
  • Thumbnail
    Approches nouvelles des modèles GARCH multivariés en grande dimension 
    Poignard, Benjamin (2017-06-15) Thèse
  • Thumbnail
    Existence of a non-averaging regime for the self-avoiding walk on a high-dimensional infinite percolation cluster 
    Lacoin, Hubert (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo