
Monte Carlo Beam Search
Cazenave, Tristan (2012), Monte Carlo Beam Search, IEEE Transactions on Computational Intelligence and AI in Games, 4, 1, p. 68-72. 10.1109/TCIAIG.2011.2180723
View/ Open
Type
Article accepté pour publication ou publiéDate
2012Journal name
IEEE Transactions on Computational Intelligence and AI in GamesVolume
4Number
1Publisher
IEEE
Pages
68-72
Publication identifier
Metadata
Show full item recordAuthor(s)
Cazenave, TristanLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Monte Carlo tree search is the state of the art for multiple games and for solving puzzles such as Morpion Solitaire. Nested Monte Carlo (NMC) search is a Monte Carlo tree search algorithm that works well for solving puzzles. We propose to enhance NMC search with beam search. We test the algorithm on Morpion Solitaire. Thanks to beam search, our program has been able to match the record score of 82 moves. Monte Carlo beam search achieves better scores in less time than NMC search alone.Subjects / Keywords
Nested Monte-Carlo Search; Puzzle; Beam SearchRelated items
Showing items related by title and author.
-
Cazenave, Tristan; Saffidine, Abdallah; Schofield, Michael John; Thielscher, Michael (2016) Communication / Conférence
-
Jouandeau, Nicolas; Cazenave, Tristan (2009) Communication / Conférence
-
Méhat, Jean; Cazenave, Tristan (2010) Article accepté pour publication ou publié
-
Arib, Souhila; Aknine, Souhila; Cazenave, Tristan (2015) Communication / Conférence
-
Cazenave, Tristan (2009) Communication / Conférence