On the integrability of Tonelli Hamiltonians
Sorrentino, Alfonso (2011), On the integrability of Tonelli Hamiltonians, Transactions of the American Mathematical Society, 363, 10, p. 5071-5089. http://dx.doi.org/10.1090/S0002-9947-2011-05492-9
Type
Article accepté pour publication ou publiéExternal document link
http://arxiv.org/abs/0903.4300v2Date
2011Journal name
Transactions of the American Mathematical SocietyVolume
363Number
10Publisher
AMS
Pages
5071-5089
Publication identifier
Metadata
Show full item recordAuthor(s)
Sorrentino, AlfonsoAbstract (EN)
In this article we discuss a weaker version of Liouville's Theorem on the integrability of Hamiltonian systems. We show that in the case of Tonelli Hamiltonians the involution hypothesis on the integrals of motion can be completely dropped and still interesting information on the dynamics of the system can be deduced. Moreover, we prove that on the $ n$-dimensional torus this weaker condition implies classical integrability in the sense of Liouville. The main idea of the proof consists in relating the existence of independent integrals of motion of a Tonelli Hamiltonian to the ``size'' of its Mather and Aubry sets. As a byproduct we point out the existence of ``non-trivial'' common invariant sets for all Hamiltonians that Poisson-commute with a Tonelli Hamiltonian.Subjects / Keywords
Liouville's theoremRelated items
Showing items related by title and author.
-
Viterbo, Claude; Sorrentino, Alfonso (2010) Article accepté pour publication ou publié
-
Massart, Daniel; Sorrentino, Alfonso (2011) Article accepté pour publication ou publié
-
Saadoune, Mohamed; Hess, Christian; Castaing, Charles (2006-09) Chapitre d'ouvrage
-
Hess, Christian (1990) Article accepté pour publication ou publié
-
Orieux, Michaël; Caillau, Jean-Baptiste; Combot, Thierry; Féjoz, Jacques (2018) Article accepté pour publication ou publié