• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

The heat equation shrinks Ising droplets to points

Lacoin, Hubert; Simenhaus, François; Toninelli, Fabio Lucio (2015), The heat equation shrinks Ising droplets to points, Communications on Pure and Applied Mathematics, 68, 9, p. 1640-1681. http://dx.doi.org/10.1002/cpa.21533

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
http://arxiv.org/abs/1306.4507v1
Date
2015
Nom de la revue
Communications on Pure and Applied Mathematics
Volume
68
Numéro
9
Éditeur
Interscience Publishers
Pages
1640-1681
Identifiant publication
http://dx.doi.org/10.1002/cpa.21533
Métadonnées
Afficher la notice complète
Auteur(s)
Lacoin, Hubert
Simenhaus, François
Toninelli, Fabio Lucio cc
Résumé (EN)
Let D be a bounded, smooth enough domain of R^2. For L>0 consider the continuous time, zero-temperature heat bath dynamics for the nearest-neighbor Ising model on (Z/L)^2 (the square lattice with lattice spacing 1/L) with initial condition such that \sigma_x=-1 if x\in D and \sigma_x=+ otherwise. We prove the following classical conjecture due to H. Spohn: In the diffusive limit where time is rescaled by L^2 and L tends to infinity, the boundary of the droplet of "-" spins follows a deterministic anisotropic curve-shortening flow, such that the normal velocity is given by the local curvature times an explicit function of the local slope. Locally, in a suitable reference frame, the evolution of the droplet boundary follows the one-dimensional heat equation. To our knowledge, this is the first proof of mean curvature-type droplet shrinking for a lattice model with genuine microscopic dynamics. An important ingredient is our recent work, where the case of convex D was solved. The other crucial point in the proof is obtaining precise regularity estimates on the deterministic curve shortening flow. This builds on geometric and analytic ideas of Grayson, Gage-Hamilton, Gage-Li, Chou-Zhu and others.
Mots-clés
Anisotropy; Ising model

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Zero-temperature 2D stochastic Ising model and anisotropic curve-shortening flow 
    Toninelli, Fabio Lucio; Simenhaus, François; Lacoin, Hubert (2014) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Polymer dynamics in the depinned phase: metastability with logarithmic barriers 
    Toninelli, Fabio Lucio; Simenhaus, François; Martinelli, Fabio; Lacoin, Hubert; Caputo, Pietro (2012) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    "Zero" temperature stochastic 3D Ising model and dimer covering fluctuations: a first step towards interface mean curvature motion 
    Caputo, Pietro; Toninelli, Fabio Lucio; Martinelli, Fabio; Simenhaus, François (2011) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    On the easiest way to connect $k$ points in the Random Interlacements process 
    Tykesson, Johan; Lacoin, Hubert (2013) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    The Scaling Limit for Zero-Temperature Planar Ising Droplets: With and Without Magnetic Fields 
    Lacoin, Hubert (2014) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo