The heat equation shrinks Ising droplets to points
dc.contributor.author | Lacoin, Hubert | |
dc.contributor.author | Simenhaus, François | |
dc.contributor.author | Toninelli, Fabio Lucio
HAL ID: 17419 ORCID: 0000-0003-1710-8811 | |
dc.date.accessioned | 2013-10-22T07:49:20Z | |
dc.date.available | 2013-10-22T07:49:20Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0010-3640 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/11904 | |
dc.language.iso | en | en |
dc.subject | Anisotropy | |
dc.subject | Ising model | |
dc.subject.ddc | 519 | en |
dc.title | The heat equation shrinks Ising droplets to points | |
dc.type | Article accepté pour publication ou publié | |
dc.contributor.editoruniversityother | Institut Camille Jordan (ICJ) CNRS : UMR5208 – Université Claude Bernard - Lyon I – Ecole Centrale de Lyon – Institut National des Sciences Appliquées (INSA) : - LYON – Université Jean Monnet - Saint-Etienne;France | |
dc.description.abstracten | Let D be a bounded, smooth enough domain of R^2. For L>0 consider the continuous time, zero-temperature heat bath dynamics for the nearest-neighbor Ising model on (Z/L)^2 (the square lattice with lattice spacing 1/L) with initial condition such that \sigma_x=-1 if x\in D and \sigma_x=+ otherwise. We prove the following classical conjecture due to H. Spohn: In the diffusive limit where time is rescaled by L^2 and L tends to infinity, the boundary of the droplet of "-" spins follows a deterministic anisotropic curve-shortening flow, such that the normal velocity is given by the local curvature times an explicit function of the local slope. Locally, in a suitable reference frame, the evolution of the droplet boundary follows the one-dimensional heat equation. To our knowledge, this is the first proof of mean curvature-type droplet shrinking for a lattice model with genuine microscopic dynamics. An important ingredient is our recent work, where the case of convex D was solved. The other crucial point in the proof is obtaining precise regularity estimates on the deterministic curve shortening flow. This builds on geometric and analytic ideas of Grayson, Gage-Hamilton, Gage-Li, Chou-Zhu and others. | |
dc.relation.isversionofjnlname | Communications on Pure and Applied Mathematics | |
dc.relation.isversionofjnlvol | 68 | |
dc.relation.isversionofjnlissue | 9 | |
dc.relation.isversionofjnldate | 2015 | |
dc.relation.isversionofjnlpages | 1640-1681 | |
dc.relation.isversionofdoi | http://dx.doi.org/10.1002/cpa.21533 | |
dc.identifier.urlsite | http://arxiv.org/abs/1306.4507v1 | |
dc.relation.isversionofjnlpublisher | Interscience Publishers | |
dc.subject.ddclabel | Probabilités et mathématiques appliquées | en |
dc.relation.forthcomingprint | oui | |
dc.description.submitted | non | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | oui | |
dc.description.readership | recherche | |
dc.description.audience | International | |
dc.relation.Isversionofjnlpeerreviewed | oui | |
dc.date.updated | 2016-09-24T15:50:21Z |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |