• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - No thumbnail

Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation

Carrapatoso, Kleber; Mischler, Stéphane (2017), Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation, Communications in Partial Differential Equations, 42, 2, p. 291-345. 10.1080/03605302.2017.1280682

Type
Article accepté pour publication ou publié
Lien vers un document non conservé dans cette base
https://hal.archives-ouvertes.fr/hal-01011361
Date
2017
Nom de la revue
Communications in Partial Differential Equations
Volume
42
Numéro
2
Éditeur
Marcel Dekker
Ville d’édition
Paris
Pages
291-345
Identifiant publication
10.1080/03605302.2017.1280682
Métadonnées
Afficher la notice complète
Auteur(s)
Carrapatoso, Kleber

Mischler, Stéphane
Résumé (EN)
The present paper deals with the parabolic-parabolic Keller-Segel equation in the plane inthe general framework of weak (or ``free energy") solutions associated to an initial datum with finite mass M<8π, finite second log-moment and finite entropy. The aim of the paper is twofold:(1) We prove the uniqueness of the ``free energy" solution. The proof uses a DiPerna-Lions renormalizing argument which makes possible to get the ``optimal regularity" as well as an estimate of the difference of two possible solutions in the critical L4/3 Lebesgue norm similarly as for the 2d vorticity Navier-Stokes equation. (2) We prove a radially symmetric and polynomial weighted L2 exponential stability of the self-similar profile in the quasi parabolic-elliptic regime. The proof is based on a perturbation argument which takes advantage of the exponential stability of the self-similar profile for the parabolic-elliptic Keller-Segel equation established in \cite{CamposDolbeault2012,EM}.
Mots-clés
Keller-Segel system; long-time behavior; stability; regularization; uniqueness; self-similar variables

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Uniqueness and long time asymptotic for the Keller-Segel equation: The Parabolic–Elliptic Case 
    Fernandez , Giani Egana; Mischler, Stéphane (2016) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane 
    Campos Serrano, Juan; Dolbeault, Jean (2014) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model 
    Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Landau equation for very soft and Coulomb potentials near Maxwellians 
    Carrapatoso, Kleber; Mischler, Stéphane (2017) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Fractional Keller-Segel Equation: Global Well-posedness and Finite Time Blow-up 
    Lafleche, Laurent; Salem, Samir (2018) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo