Kőnig’s edge-colouring theorem for all graphs
Nguyen, Viet Hung; Cornaz, Denis (2013), Kőnig’s edge-colouring theorem for all graphs, Operations Research Letters, 41, 6, p. 592-596. http://dx.doi.org/10.1016/j.orl.2013.08.005
Type
Article accepté pour publication ou publiéDate
2013-11-02Journal name
Operations Research LettersVolume
41Number
6Publisher
Elsevier
Pages
592-596
Publication identifier
Metadata
Show full item recordAbstract (EN)
We show that the maximum degree of a graph G is equal to the minimum number of ocm sets covering G, where an ocm set is the vertex-disjoint union of elementary odd cycles and one matching, and a collection of ocm sets covers G if every edge is in the matching of an ocm set or in some odd cycle of at least two ocm sets.Subjects / Keywords
TDI system; Substar polytope; Kőnig’s edge-colouring theoremRelated items
Showing items related by title and author.
-
Cornaz, Denis; Magnouche, Youcef; Mahjoub, Ali Ridha (2014) Communication / Conférence
-
Cornaz, Denis; Meurdesoif, Philippe (2012) Communication / Conférence
-
Cornaz, Denis; Mahjoub, Ali Ridha (2007) Article accepté pour publication ou publié
-
Cornaz, Denis; Grappe, Roland; Lacroix, Mathieu (2019) Article accepté pour publication ou publié
-
Cornaz, Denis; Meurdesoif, Philippe (2010) Article accepté pour publication ou publié