Existence of a non-averaging regime for the self-avoiding walk on a high-dimensional infinite percolation cluster
Lacoin, Hubert (2014), Existence of a non-averaging regime for the self-avoiding walk on a high-dimensional infinite percolation cluster, Journal of Statistical Physics, 154, 6, p. 1461-1482. http://dx.doi.org/10.1007/s10955-014-0926-x
Type
Article accepté pour publication ou publiéDate
2014Journal name
Journal of Statistical PhysicsVolume
154Number
6Publisher
Kluwer Academic Publishers etc.
Pages
1461-1482
Publication identifier
Metadata
Show full item recordAuthor(s)
Lacoin, HubertAbstract (EN)
Let Z_N be the number of self-avoiding paths of length N starting from the origin on the infinite cluster obtained after performing Bernoulli percolation on Z^d with parameter p>p_c(Z^d). The object of this paper is to study the connective constant of the dilute lattice \limsup_{N\to \infty} Z_N^{1/N}, which is a non-random quantity. We want to investigate if the inequality \limsup_{N\to \infty} (Z_N)^{1/N} \le \lim_{N\to \infty} E[Z_N]^{1/N} obtained with the Borel-Cantelli Lemma is strict or not. In other words, we want to know the the quenched and annealed versions of the connective constant are the same. On a heuristic level, this indicates whether or not localization of the trajectories occurs. We prove that when d is sufficiently large there exists p^{(2)}_c>p_c such that the inequality is strict for p\in (p_c,p^{(2)}_c).Subjects / Keywords
Percolation; Disorder relevance; Self-avoiding walk; Random media; PolymersRelated items
Showing items related by title and author.
-
Lacoin, Hubert (2014) Article accepté pour publication ou publié
-
Lacoin, Hubert (2012) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Lacoin, Hubert (2014) Article accepté pour publication ou publié
-
Klopp, Olga (2011) Article accepté pour publication ou publié