Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion
Lacoin, Hubert (2016), Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion, Annals of Probability, 44, 2, p. 1426-1487. 10.1214/15-AOP1004
Type
Article accepté pour publication ou publiéDate
2016Journal name
Annals of ProbabilityVolume
44Number
2Publisher
Institute of Mathematical Statistics
Published in
Paris
Pages
1426-1487
Publication identifier
Metadata
Show full item recordAuthor(s)
Lacoin, HubertAbstract (EN)
In this paper, we investigate the mixing time of the adjacent transposition shuffle for a deck of cards. We prove that around time N^2\log N/(2\pi^2), the total-variation distance to equilibrium of the deck distribution drops abruptly from 1 to 0, and that the separation distance has a similar behavior but with a transition occurring at time (N^2\log N)/\pi^2. This solves a conjecture formulated by David Wilson. We present also similar results for the exclusion process on a segment of length N with k particles.Subjects / Keywords
Shuffle; Mixing time; Particle systems; Cutoff; Markov chainsRelated items
Showing items related by title and author.
-
Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Caputo, Pietro; Labbé, Cyril; Lacoin, Hubert (2020) Article accepté pour publication ou publié
-
Labbé, Cyril; Lacoin, Hubert (2019) Article accepté pour publication ou publié
-
Lacoin, Hubert; Leblond, Rémi (2011) Article accepté pour publication ou publié
-
Lacoin, Hubert (2017) Article accepté pour publication ou publié