Quantitative stochastic homogenization of viscous Hamilton-Jacobi equations
Cardaliaguet, Pierre; Armstrong, Scott N. (2015), Quantitative stochastic homogenization of viscous Hamilton-Jacobi equations, Communications in Partial Differential Equations, 40, 3, p. 540-600. http://dx.doi.org/10.1080/03605302.2014.971372
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00922714Date
2015Journal name
Communications in Partial Differential EquationsVolume
40Number
3Publisher
Taylor and Francis
Pages
540-600
Publication identifier
Metadata
Show full item recordAbstract (EN)
We prove explicit estimates for the error in random homogenization of degenerate, second-order Hamilton-Jacobi equations, assuming the coefficients satisfy a finite range of dependence. In particular, we obtain an algebraic rate of convergence with overwhelming probability under certain structural conditions on the Hamiltonian.Subjects / Keywords
Hamilton-Jacobi equationsRelated items
Showing items related by title and author.
-
Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations Armstrong, Scott N.; Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2014) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Cardaliaguet, Pierre (2018) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Tran, Hung V. (2014) Article accepté pour publication ou publié
-
Cardaliaguet, Pierre; Souganidis, Panagiotis E. (2017) Article accepté pour publication ou publié
-
Armstrong, Scott N.; Tran, Hung V.; Yu, Yifeng (2015) Article accepté pour publication ou publié