• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Feynman-Kac particle integration with geometric interacting jumps

Del Moral, Pierre; Jacob, Pierre E.; Lee, Athena; Murray, Lawrence; Peters, Gareth W. (2013), Feynman-Kac particle integration with geometric interacting jumps, Stochastic Analysis and Applications, 31, 5, p. 830-871. 10.1080/07362994.2013.817247

Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/abs/1211.7191v1
Date
2013
Journal name
Stochastic Analysis and Applications
Volume
31
Number
5
Publisher
Springer
Published in
Paris
Pages
830-871
Publication identifier
10.1080/07362994.2013.817247
Metadata
Show full item record
Author(s)
Del Moral, Pierre

Jacob, Pierre E. cc

Lee, Athena

Murray, Lawrence

Peters, Gareth W.
Abstract (EN)
Résumé : This article is concerned with the design and analysis of discrete time Feynman-Kac particle integration models with geometric interacting jump processes. We analyze two general types of model, corresponding to whether the reference process is in continuous or discrete time. For the former, we consider discrete generation particle models defined by arbitrarily fine time mesh approximations of the Feynman-Kac models with continuous time path integrals. For the latter, we assume that the discrete process is observed at integer times and we design new approximation models with geometric interacting jumps in terms of a sequence of intermediate time steps between the integers. In both situations, we provide non asymptotic bias and variance theorems w.r.t. the time step and the size of the system, yielding what appear to be the first results of this type for this class of Feynman-Kac particle integration models. We also discuss uniform convergence estimates w.r.t. the time horizon. Our approach is based on an original semigroup analysis with first order decompositions of the fluctuation errors.
Subjects / Keywords
interacting jump particle systems; measure valued processes; Feynman-Kac formulae; Analysis of variance; non asymptotic bias

Related items

Showing items related by title and author.

  • Thumbnail
    Path storage in the particle filter 
    Jacob, Pierre E.; Murray, Lawrence; Rubenthaler, Sylvain (2015) Article accepté pour publication ou publié
  • Thumbnail
    Advancing AKIS with Assemblage Thinking 
    Sutherland, Lee-Ann; Adamsone-Fiskovica, Anda; Koutsouris, Alexandros; Laurent, Catherine; Straete, Egil Petter; Labarthe, Pierre (2023) Article accepté pour publication ou publié
  • Thumbnail
    Sampling using Adaptive Regenerative Processes 
    McKimm, Hector; Wang, Andi Q.; Pollock, Murray; Robert, Christian P.; Roberts, Gareth O. (2022) Document de travail / Working paper
  • Thumbnail
    Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions 
    Armstrong, Scott N.; Cardaliaguet, Pierre (2018) Article accepté pour publication ou publié
  • Thumbnail
    Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps 
    Jara, Milton Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo